different value of λ from different version of epw

Post here questions linked with issue while running the EPW code

Moderator: stiwari

Post Reply
Mei Helin
Posts: 1
Joined: Tue Dec 09, 2025 6:04 am
Affiliation: LanZhou university

different value of λ from different version of epw

Post by Mei Helin »

Dear all:
I am using EPW to calculate the superconducting properties of by solving the anisotropic Migdal-Eliashberg equations. Initially, I performed calculations using QE 7.2 + EPW 5.7, obtaining λ = 1.0657374 in the epw.out file (after testing k-points and degaussw). To obtain files such as *.lambda.frmsf and .imag_aniso_gap0_.00.frmsf, I used the parameter iverbosity = 2. Additionally, I learned that "The previous versions (<= v.5.7) replace eigenvalues outside the fsthick window by a dummy value." from viewtopic.php?p=5220&hilit=fermisurfer#p5220
Therefore, I recalculated using QE 7.4.1 and EPW 5.9 (without recalculating phonons, by reading the *.dvscf files computed with QE 7.2, just performing SCF and NSCF calculations with QE 7.4.1 before the EPW calculation). However, with the same input file, the output result for λ changed significantly, giving λ = 1.9665565, which confused me.
Considering that the .dvscf_q files were not recalculated during the testing process, I completely restarted the calculation from scratch using QE 7.5 and EPW 6.0 (including phonon calculations recomputed with QE 7.5), and still obtained a result completely different from that of QE 7.2 + EPW 5.7, with λ = 2.0900754. Given that the Fermi energy levels (all versions show 15.4101 eV) and total energies computed with different versions of QE (QE 7.2, QE 7.3.1, QE 7.4.1, QE 7.5) are almost identical (QE 7.2 yields "! total energy = -1173.65812899 Ry," while other versions give "! total energy = -1173.65812897 Ry"), I suspect the discrepancy lies in the EPW calculations. Finally, using QE 7.3.1 and EPW 5.8 (reading the phonon results computed with QE 7.2), I obtained λ = 1.0657374, which resolved my initial problem of obtaining usable *.lambda.frmsf files, etc.
However, I cannot understand why the restructured EPW code (version >= 5.9) produces a completely different λ value compared to earlier versions. Additionally, I performed calculations for the example case of Pb using different versions, and the results are almost the same.
λ results for Pb(the phonon files *.dvscf,etc.all calculated from qe7.2)
qe7.2+epw5.7:λ=1.1530302
qe7.2-epw5.8.1:λ=1.1530301
qe7.2-epw5.9:λ=1.1530301
qe7.2-epw6.0:λ=1.1557114
qe7.3.1-epw5.8:λ=1.1530301
qe7.4.1-epw5.9:λ=1.1530301
qe7.5-epw6.0:λ=1.1557114
Below, I attached epw.in and epw.out for my material.


Thanks!

Best
Mei Helin
--
&inputepw
prefix='pwscf',
amass(1)=88.906,
amass(2)=101.07000,
amass(3)=30.97376,
outdir='./tmp'
dvscf_dir = './save'

ep_coupling = .true.
elph = .true.

epbwrite = .true.
epbread = .false.
epwwrite = .true.
epwread = .false.

elecselfen = .false.
phonselfen = .false.
ephwrite = .true.

a2f = .false.
eliashberg = .true.

laniso = .true.
limag = .true.
lpade = .true.
lacon = .false.
fermi_plot = .true.
iverbosity = 2


fsthick = 0.39 ! eV
degaussw = 0.04 ! eV
degaussq = 0.1 ! meV

nsiter = 500
npade = 22
conv_thr_iaxis = 1.0d-3
conv_thr_racon = 1.0d-3

wscut = 0.97 ! eV Upper limit over frequency integration/summation in the Elisashberg eq
muc = 0.10
nstemp = 1
temps = 6! K provide list of temperetures OR (nsitemp and temps = tempsmin tempsmax for even space mode)

etf_mem = 0
max_memlt = 120d0

nk1 = 6
nk2 = 6
nk3 = 6

nq1 = 3
nq2 = 3
nq3 = 3

mp_mesh_k = .true.

nkf1 = 24
nkf2 = 24
nkf3 = 24

nqf1 = 12
nqf2 = 12
nqf3 = 12

nbndsub = 36,
bands_skipped = 'exclude_bands = 1-32'

wannierize = .true.
num_iter = 1000
dis_win_max = 20.3
dis_win_min = 4.1
dis_froz_max= 16.01
dis_froz_min= 4.1

proj(1) = 'Ru:dyz'
proj(2) = 'Ru:dz2'
proj(3) = 'Ru:dx2-y2'
proj(4) = 'Ru:dxz'
proj(5) = 'Ru:dxy'
proj(6) = 'B:pz'
proj(7) = 'B:py'
wdata(1) = 'bands_plot = .true.'
wdata(2) = 'begin kpoint_path'
wdata(3) = 'G 0.00 0.00 0.00 Y 0.00 0.50 0.00'
wdata(4) = 'Y 0.00 0.50 0.00 S 0.50 0.50 0.00'
wdata(5) = 'S 0.50 0.50 0.00 X 0.50 0.00 0.00'
wdata(6) = 'X 0.50 0.00 0.00 G 0.00 0.00 0.00'
wdata(7) = 'G 0.00 0.00 0.00 Z 0.00 0.00 0.50'
wdata(8) = 'Z 0.00 0.00 0.50 U 0.00 0.50 0.50'
wdata(9) = 'U 0.00 0.50 0.50 R 0.50 0.50 0.50'
wdata(10) = 'R 0.50 0.50 0.50 T 0.50 0.00 0.50'
wdata(11) = 'T 0.50 0.00 0.50 Z 0.00 0.00 0.50'
wdata(12) = 'end kpoint_path'
wdata(13) = 'bands_plot_format = gnuplot'
wdata(14) = 'write_hr = .true.'
# fermi_energy = 13.4716
/
******************QE 7.2 + EPW 5.7*****************
********************************************************
********************************************************
********************************************************
......
Writing epmatq on .epb files


The .epb files have been correctly written


Band disentanglement is used: nbndsub = 36
Use zone-centred Wigner-Seitz cells
Number of WS vectors for electrons 343
Number of WS vectors for phonons 27
Number of WS vectors for electron-phonon 27
Maximum number of cores for efficient parallelization 1296
Results may improve by using use_ws == .TRUE.

Velocity matrix elements calculated


Bloch2wane: 1 / 27
Bloch2wane: 2 / 27
Bloch2wane: 3 / 27
Bloch2wane: 4 / 27
Bloch2wane: 5 / 27
Bloch2wane: 6 / 27
Bloch2wane: 7 / 27
Bloch2wane: 8 / 27
Bloch2wane: 9 / 27
Bloch2wane: 10 / 27
Bloch2wane: 11 / 27
Bloch2wane: 12 / 27
Bloch2wane: 13 / 27
Bloch2wane: 14 / 27
Bloch2wane: 15 / 27
Bloch2wane: 16 / 27
Bloch2wane: 17 / 27
Bloch2wane: 18 / 27
Bloch2wane: 19 / 27
Bloch2wane: 20 / 27
Bloch2wane: 21 / 27
Bloch2wane: 22 / 27
Bloch2wane: 23 / 27
Bloch2wane: 24 / 27
Bloch2wane: 25 / 27
Bloch2wane: 26 / 27
Bloch2wane: 27 / 27


Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file

===================================================================
Memory usage: VmHWM = 18671Mb
VmPeak = 21021Mb
===================================================================

Using uniform q-mesh: 12 12 12
Size of q point mesh for interpolation: 1728
Using uniform MP k-mesh: 24 24 24
Size of k point mesh for interpolation: 4394
Max number of k points per pool: 124

Fermi energy coarse grid = 15.411924 eV

Skipping the first 32 bands:

The Fermi level will be determined with 68.00000 electrons

Fermi energy is calculated from the fine k-mesh: Ef = 15.405362 eV

===================================================================

ibndmin = 32 ebndmin = 15.016 eV
ibndmax = 36 ebndmax = 15.795 eV


Number of ep-matrix elements per pool : 74400 ~= 581.25 Kb (@ 8 bytes/ DP)
Number selected, total 100 100
Number selected, total 200 200
Number selected, total 300 300
Number selected, total 400 400
Number selected, total 500 500
Number selected, total 600 600
Number selected, total 700 700
Number selected, total 800 800
Number selected, total 900 900
Number selected, total 1000 1000
Number selected, total 1100 1100
Number selected, total 1200 1200
Number selected, total 1300 1300
Number selected, total 1400 1400
Number selected, total 1500 1500
Number selected, total 1600 1600
Number selected, total 1700 1700
We only need to compute 1728 q-points


Nr. of irreducible k-points on the uniform grid: 2197


Finish mapping k+sign*q onto the fine irreducibe k-mesh and writing .ikmap file


Nr irreducible k-points within the Fermi shell = 2197 out of 2197

Progression iq (fine) = 100/ 1728
Progression iq (fine) = 200/ 1728
Progression iq (fine) = 300/ 1728
Progression iq (fine) = 400/ 1728
Progression iq (fine) = 500/ 1728
Progression iq (fine) = 600/ 1728
Progression iq (fine) = 700/ 1728
Progression iq (fine) = 800/ 1728
Progression iq (fine) = 900/ 1728
Progression iq (fine) = 1000/ 1728
Progression iq (fine) = 1100/ 1728
Progression iq (fine) = 1200/ 1728
Progression iq (fine) = 1300/ 1728
Progression iq (fine) = 1400/ 1728
Progression iq (fine) = 1500/ 1728
Progression iq (fine) = 1600/ 1728
Progression iq (fine) = 1700/ 1728
Fermi level (eV) = 0.154053623033891D+02
DOS(states/spin/eV/Unit Cell) = 0.601328881720386D+01
Electron smearing (eV) = 0.400000000000000D-01
Fermi window (eV) = 0.390000000000000D+00

Finish writing .ephmat files

===================================================================
Memory usage: VmHWM = 18671Mb
VmPeak = 21021Mb
===================================================================


Finish writing dos file pwscf.dos


Finish writing phdos files pwscf.phdos and pwscf.phdos_proj

Fermi surface calculation on fine mesh
Fermi level (eV) = 15.405362
5 bands within the Fermi window


===================================================================
Solve anisotropic Eliashberg equations
===================================================================


Finish reading freq file

Fermi level (eV) = 1.5405362303E+01
DOS(states/spin/eV/Unit Cell) = 6.0132888172E+00
Electron smearing (eV) = 4.0000000000E-02
Fermi window (eV) = 3.9000000000E-01
Nr irreducible k-points within the Fermi shell = 2197 out of 2197

5 bands within the Fermi window


Finish reading egnv file


Max nr of q-points = 1728


Finish reading ikmap files


Start reading .ephmat files


Finish reading .ephmat files

a2f file is not found to estimate initial gap: calculating a2f files


Finish reading a2f file

Electron-phonon coupling strength = 1.0657374

Estimated Allen-Dynes Tc = 20.328836 K for muc = 0.10000

Estimated w_log in Allen-Dynes Tc = 22.895479 meV

Estimated BCS superconducting gap = 3.083174 meV

Estimated Tc from machine learning model = 23.002720 K


temp( 1) = 6.00000 K

Solve anisotropic Eliashberg equations on imaginary-axis

Total number of frequency points nsiw( 1) = 299
Cutoff frequency wscut = 0.9730
broyden mixing factor = 0.70000
mixing factor = 0.2 is used for the first three iterations.

Actual number of frequency points ( 1) = 299 for uniform sampling

Size of allocated memory per pool: ~= 12.9582 Gb
iter ethr znormi deltai [meV]
1 3.256481E+00 2.018520E+00 3.678715E+00
2 5.960252E-02 2.016828E+00 3.739717E+00
3 2.537658E-01 2.010013E+00 3.954660E+00
4 3.668231E-02 2.004597E+00 4.094021E+00
5 3.184623E-03 2.004108E+00 4.110405E+00
6 6.512153E-03 2.003325E+00 4.137011E+00
7 1.156185E-02 2.002085E+00 4.177999E+00
8 4.101068E-04 2.001905E+00 4.183303E+00
Convergence was reached in nsiter = 8

Chemical potential (itemp = 1) = 1.5405362303E+01 eV

Temp (itemp = 1) = 6.000 K Free energy = -0.044323 meV

Min. / Max. values of superconducting gap = 0.000000 5.738480 meV
iaxis_imag : 8762.15s CPU 8780.60s WALL ( 1 calls)


Pade approximant of anisotropic Eliashberg equations from imaginary-axis to real-axis
Cutoff frequency wscut = 0.9700

pade Re[znorm] Re[delta] [meV]
66 1.983519E+00 4.107839E+00

Convergence was reached for N = 66 Pade approximants

Min. / Max. values of superconducting gap = 0.000000 5.871219 meV
raxis_pade : 50.67s CPU 71.71s WALL ( 1 calls)

itemp = 1 total cpu time : 8852.32 secs
...
***************QE 7.3.1 + EPW 5.8.1***************
********************************************************
********************************************************
********************************************************
......
Writing epmatq on .epb files


The .epb files have been correctly written


Band disentanglement is used: nbndsub = 36
Use zone-centred Wigner-Seitz cells
Number of WS vectors for electrons 343
Number of WS vectors for phonons 27
Number of WS vectors for electron-phonon 27
Maximum number of cores for efficient parallelization 1296
Results may improve by using use_ws == .TRUE.

Inside velocity step 1


Velocity matrix elements calculated


Bloch2wane: 1 / 27
Bloch2wane: 2 / 27
Bloch2wane: 3 / 27
Bloch2wane: 4 / 27
Bloch2wane: 5 / 27
Bloch2wane: 6 / 27
Bloch2wane: 7 / 27
Bloch2wane: 8 / 27
Bloch2wane: 9 / 27
Bloch2wane: 10 / 27
Bloch2wane: 11 / 27
Bloch2wane: 12 / 27
Bloch2wane: 13 / 27
Bloch2wane: 14 / 27
Bloch2wane: 15 / 27
Bloch2wane: 16 / 27
Bloch2wane: 17 / 27
Bloch2wane: 18 / 27
Bloch2wane: 19 / 27
Bloch2wane: 20 / 27
Bloch2wane: 21 / 27
Bloch2wane: 22 / 27
Bloch2wane: 23 / 27
Bloch2wane: 24 / 27
Bloch2wane: 25 / 27
Bloch2wane: 26 / 27
Bloch2wane: 27 / 27

Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file

===================================================================
Memory usage: VmHWM = 18985Mb
VmPeak = 21330Mb
===================================================================

Using uniform q-mesh: 12 12 12
Size of q point mesh for interpolation: 1728
Using uniform MP k-mesh: 24 24 24
Size of k point mesh for interpolation: 4394
Max number of k points per pool: 124

Fermi energy coarse grid = 15.411924 eV

Skipping the first 32 bands:

The Fermi level will be determined with 68.00000 electrons

Fermi energy is calculated from the fine k-mesh: Ef = 15.405366 eV

===================================================================

ibndmin = 32 ebndmin = 15.016 eV
ibndmax = 36 ebndmax = 15.795 eV


Number of ep-matrix elements per pool : 74400 ~= 581.25 Kb (@ 8 bytes/ DP)
Number selected, total 100 100
Number selected, total 200 200
Number selected, total 300 300
Number selected, total 400 400
Number selected, total 500 500
Number selected, total 600 600
Number selected, total 700 700
Number selected, total 800 800
Number selected, total 900 900
Number selected, total 1000 1000
Number selected, total 1100 1100
Number selected, total 1200 1200
Number selected, total 1300 1300
Number selected, total 1400 1400
Number selected, total 1500 1500
Number selected, total 1600 1600
Number selected, total 1700 1700
We only need to compute 0 q-points


Nr. of irreducible k-points on the uniform grid: 2197


Finish mapping k+sign*q onto the fine irreducibe k-mesh and writing .ikmap file


Nr irreducible k-points within the Fermi shell = 2197 out of 2197

Progression iq (fine) = 100/ 1728
Progression iq (fine) = 200/ 1728
Progression iq (fine) = 300/ 1728
Progression iq (fine) = 400/ 1728
Progression iq (fine) = 500/ 1728
Progression iq (fine) = 600/ 1728
Progression iq (fine) = 700/ 1728
Progression iq (fine) = 800/ 1728
Progression iq (fine) = 900/ 1728
Progression iq (fine) = 1000/ 1728
Progression iq (fine) = 1100/ 1728
Progression iq (fine) = 1200/ 1728
Progression iq (fine) = 1300/ 1728
Progression iq (fine) = 1400/ 1728
Progression iq (fine) = 1500/ 1728
Progression iq (fine) = 1600/ 1728
Progression iq (fine) = 1700/ 1728
Fermi level (eV) = 0.154053660958290D+02
DOS(states/spin/eV/Unit Cell) = 0.601593297873692D+01
Electron smearing (eV) = 0.400000000000000D-01
Fermi window (eV) = 0.390000000000000D+00

Finish writing .ephmat files

===================================================================
Memory usage: VmHWM = 18985Mb
VmPeak = 21330Mb
===================================================================


Finish writing dos file pwscf.dos


Finish writing phdos files pwscf.phdos and pwscf.phdos_proj

Fermi surface calculation on fine mesh
Fermi level (eV) = 15.405366
5 bands within the Fermi window


===================================================================
Solve anisotropic Eliashberg equations
===================================================================


Finish reading freq file

Fermi level (eV) = 1.5405366096E+01
DOS(states/spin/eV/Unit Cell) = 6.0159329787E+00
Electron smearing (eV) = 4.0000000000E-02
Fermi window (eV) = 3.9000000000E-01
Nr irreducible k-points within the Fermi shell = 2197 out of 2197

5 bands within the Fermi window


Finish reading egnv file


Max nr of q-points = 1728


Finish reading ikmap files


Start reading .ephmat files


Finish reading .ephmat files

a2f file is not found to estimate initial gap: calculating a2f files


Finish reading a2f file

Electron-phonon coupling strength = 1.0659909

Estimated Allen-Dynes Tc = 20.335861 K for muc = 0.10000

Estimated w_log in Allen-Dynes Tc = 22.895648 meV

Estimated BCS superconducting gap = 3.084240 meV

Estimated Tc from machine learning model = 23.012631 K


temp( 1) = 6.00000 K

Solve anisotropic Eliashberg equations on imaginary-axis

Total number of frequency points nsiw( 1) = 299
Cutoff frequency wscut = 0.9730
broyden mixing factor = 0.70000

Actual number of frequency points ( 1) = 299 for uniform sampling

Size of allocated memory per pool: ~= 12.9307 Gb
iter ethr znormi deltai [meV]
1 3.614812E+00 2.019404E+00 3.634613E+00
2 1.516076E-01 2.013728E+00 3.827201E+00
3 4.083655E-02 2.008819E+00 3.971124E+00
4 1.736930E-02 2.005039E+00 4.084557E+00
5 3.000626E-02 2.001687E+00 4.199033E+00
6 1.146668E-02 2.000342E+00 4.243291E+00
7 6.471479E-03 2.001087E+00 4.217600E+00
8 2.048160E-03 2.001405E+00 4.208710E+00
9 5.342845E-04 2.001341E+00 4.211061E+00
Convergence was reached in nsiter = 9

Chemical potential (itemp = 1) = 1.5405366096E+01 eV

Temp (itemp = 1) = 6.000 K Free energy = -0.044959 meV

Min. / Max. values of superconducting gap = 0.000000 5.797223 meV
iaxis_imag : 5921.22s CPU 5951.44s WALL ( 1 calls)


Pade approximant of anisotropic Eliashberg equations from imaginary-axis to real-axis
Cutoff frequency wscut = 0.9700

pade Re[znorm] Re[delta] [meV]
66 1.982835E+00 4.134776E+00

Convergence was reached for N = 66 Pade approximants

Min. / Max. values of superconducting gap = 0.000000 5.932875 meV
raxis_pade : 52.64s CPU 74.12s WALL ( 1 calls)

itemp = 1 total cpu time : 6025.56 secs
...
******************QE 7.5 + EPW 6.0*****************
********************************************************
********************************************************
********************************************************
......
Writing epmatq on .epb files


The .epb files have been correctly written


Band disentanglement is used: nbndsub = 36
Use zone-centred Wigner-Seitz cells
Number of WS vectors for electrons 343
Number of WS vectors for phonons 27
Number of WS vectors for electron-phonon 27
Maximum number of cores for efficient parallelization 1296
Results may improve by using use_ws == .TRUE.

Inside velocity step 1


Velocity matrix elements calculated


Bloch2wane: 1 / 27
Bloch2wane: 2 / 27
Bloch2wane: 3 / 27
Bloch2wane: 4 / 27
Bloch2wane: 5 / 27
Bloch2wane: 6 / 27
Bloch2wane: 7 / 27
Bloch2wane: 8 / 27
Bloch2wane: 9 / 27
Bloch2wane: 10 / 27
Bloch2wane: 11 / 27
Bloch2wane: 12 / 27
Bloch2wane: 13 / 27
Bloch2wane: 14 / 27
Bloch2wane: 15 / 27
Bloch2wane: 16 / 27
Bloch2wane: 17 / 27
Bloch2wane: 18 / 27
Bloch2wane: 19 / 27
Bloch2wane: 20 / 27
Bloch2wane: 21 / 27
Bloch2wane: 22 / 27
Bloch2wane: 23 / 27
Bloch2wane: 24 / 27
Bloch2wane: 25 / 27
Bloch2wane: 26 / 27
Bloch2wane: 27 / 27

Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file

===================================================================
Memory usage: VmHWM = 18939Mb
VmPeak = 21284Mb
===================================================================

Using uniform q-mesh: 12 12 12
Size of q point mesh for interpolation: 1728
Using uniform MP k-mesh: 24 24 24
Size of k point mesh for interpolation: 2197
Max number of k points per pool: 62

Fermi energy coarse grid = 15.411924 eV

Skipping 32 occupied bands:

The Fermi level will be determined with 68.00000 electrons

Fermi energy is calculated from the fine k-mesh: Ef = 15.405361 eV

===================================================================

ibndmin = 32 ebndmin = 15.016 eV
ibndmax = 36 ebndmax = 15.795 eV


Number of ep-matrix elements per pool : 74400 ~= 581.25 Kb (@ 8 bytes/ DP)
Number selected, total 100 100
Number selected, total 200 200
Number selected, total 300 300
Number selected, total 400 400
Number selected, total 500 500
Number selected, total 600 600
Number selected, total 700 700
Number selected, total 800 800
Number selected, total 900 900
Number selected, total 1000 1000
Number selected, total 1100 1100
Number selected, total 1200 1200
Number selected, total 1300 1300
Number selected, total 1400 1400
Number selected, total 1500 1500
Number selected, total 1600 1600
Number selected, total 1700 1700
We only need to compute 1728 q-points


Nr. of irreducible k-points on the uniform grid: 2197


Finish mapping k+sign*q onto the fine irreducibe k-mesh and writing .ikmap file


Nr irreducible k-points within the Fermi shell = 2197 out of 2197

Progression iq (fine) = 100/ 1728
Progression iq (fine) = 200/ 1728
Progression iq (fine) = 300/ 1728
Progression iq (fine) = 400/ 1728
Progression iq (fine) = 500/ 1728
Progression iq (fine) = 600/ 1728
Progression iq (fine) = 700/ 1728
Progression iq (fine) = 800/ 1728
Progression iq (fine) = 900/ 1728
Progression iq (fine) = 1000/ 1728
Progression iq (fine) = 1100/ 1728
Progression iq (fine) = 1200/ 1728
Progression iq (fine) = 1300/ 1728
Progression iq (fine) = 1400/ 1728
Progression iq (fine) = 1500/ 1728
Progression iq (fine) = 1600/ 1728
Progression iq (fine) = 1700/ 1728
Fermi level (eV) = 0.154053611388395D+02
DOS(states/spin/eV/Unit Cell) = 0.601377092031663D+01
Electron smearing (eV) = 0.400000000000000D-01
Fermi window (eV) = 0.390000000000000D+00

Finish writing .ephmat files

===================================================================
Memory usage: VmHWM = 18939Mb
VmPeak = 21284Mb
===================================================================


Finish writing dos file pwscf.dos


Finish writing phdos files pwscf.phdos and pwscf.phdos_proj

Fermi surface calculation on fine mesh
Fermi level (eV) = 15.405361
5 bands within the Fermi window


===================================================================
Solve anisotropic Eliashberg equations
===================================================================


Finish reading freq file

Fermi level (eV) = 1.5405361139E+01
DOS(states/spin/eV/Unit Cell) = 6.0137709203E+00
Electron smearing (eV) = 4.0000000000E-02
Fermi window (eV) = 3.9000000000E-01
Nr irreducible k-points within the Fermi shell = 2197 out of 2197

5 bands within the Fermi window


Finish reading egnv file


Max nr of q-points = 1728


Finish reading ikmap files


Start reading .ephmat files


Finish reading .ephmat files

a2f file is not found to estimate initial gap: calculating a2f files


Finish reading a2f file

Electron-phonon coupling strength = 2.0900754

Estimated Tc using McMillan expression = 30.4710 K for muc = 0.1000

Estimated Tc using Allen-Dynes modified McMillan expression = 38.2211 K

Estimated Tc using SISSO machine learning model = 46.7722 K

Estimated w_log = 17.7260 meV

Estimated BCS superconducting gap using McMillan Tc = 4.6214 meV

Actual number of frequency points ( 1) = 299 for uniform sampling

temp( 1) = 6.00000 K

Solve anisotropic Eliashberg equations on imaginary-axis

Total number of frequency points nsiw( 1) = 299
Cutoff frequency wscut = 0.9700 eV
Maximum frequency = 0.9697 eV
broyden mixing factor = 0.70000


Size of allocated memory per pool: ~= 12.9307 Gb
iter ethr znormi deltai [meV]
1 3.730366E+00 2.871851E+00 6.246635E+00
2 5.835262E-02 2.822491E+00 6.918219E+00
3 4.438174E-02 2.774426E+00 7.568850E+00
4 5.943790E-02 2.737093E+00 8.095420E+00
5 7.857648E-02 2.697950E+00 8.671759E+00
6 2.563215E-03 2.699175E+00 8.657025E+00
7 3.109254E-02 2.714497E+00 8.442798E+00
8 3.716930E-03 2.712618E+00 8.471856E+00
9 9.442878E-03 2.708195E+00 8.538145E+00
10 3.459260E-03 2.709981E+00 8.511827E+00
11 3.751829E-03 2.707957E+00 8.541838E+00
12 1.470436E-03 2.707311E+00 8.552638E+00
13 2.786608E-03 2.705879E+00 8.573226E+00
14 1.367435E-03 2.705206E+00 8.583130E+00
15 1.191065E-03 2.704634E+00 8.591639E+00
16 1.710532E-03 2.703788E+00 8.603964E+00
17 6.911513E-04 2.703442E+00 8.609034E+00
Convergence was reached in nsiter = 17

Temp (itemp = 1) = 6.000 K Free energy = -0.484067 meV

Min. / Max. values of superconducting gap = 0.000000 10.102507 meV
iaxis_imag : 6110.06s CPU 6124.30s WALL ( 1 calls)


Pade approximant of anisotropic Eliashberg equations from imaginary-axis to real-axis
Cutoff frequency wscut = 0.9700

pade Re[znorm] Re[delta] [meV]
66 2.686221E+00 8.425800E+00

Convergence was reached for N = 66 Pade approximants

Min. / Max. values of superconducting gap = 0.000000 10.778465 meV
raxis_pade : 51.53s CPU 72.81s WALL ( 1 calls)

itemp = 1 total cpu time : 6197.11 secs
......
Post Reply