I'm currently trying to calculate electron-phonon-coupling in lithium azide, but I'm already running into problems when comparing the phonon dispersion gained from Quantum Espresso with the results obtained by the EPW calculation at the Gamma point (unusual softening of the lowest
acoustic mode) which does not appear in other calculations.
Gamma is at ~0.85
I have tried other paths and a higher point density along the path with the strange softening still appearing around Gamma.
Is this a problem in the interpolation?
And is there a way to fix it?
I would be grateful for any help!
Cheers
Jakob
scf input:
Code: Select all
&control
calculation = 'scf',
restart_mode='from_scratch',
prefix = 'lin3',
pseudo_dir = './',
outdir = './',
verbosity='high',
/
&system
ibrav = 0,
celldm(1)= 10.63348890,
nat=4,
ntyp=2,
ecutwfc=60,
ecutrho=480,
nbnd=26
/
&electrons
conv_thr=1.0d-10
/
CELL_PARAMETERS alat
0.497678237 -0.295480812 -0.001804250
0.497678237 0.295480812 -0.001804250
-0.256137630 -0.000000000 0.846376674
ATOMIC_SPECIES
Li 6.9675 Li.pbe-s-kjpaw_psl.1.0.0.UPF
N 14.00650 N.pbe-n-kjpaw_psl.1.0.0.UPF
ATOMIC_POSITIONS crystal
N 0.6075314159 0.6075314159 0.7438150802
N 0.3924685841 0.3924685841 0.2561849198
N 0.5000000000 0.5000000000 0.5000000000
Li -0.0000000000 -0.0000000000 -0.0000000000
K_POINTS automatic
7 7 5 1 1 1
Code: Select all
&inputph
prefix='lin3',
fildyn='lin3.dyn',
fildvscf='dvscf',
ldisp=.true.,
outdir='./',
nq1=3,
nq2=3,
nq3=3,
tr2_ph=1.0d-12
/
Code: Select all
&inputepw
prefix = 'lin3'
amass(1) = 6.9675
amass(2) = 14.00650
outdir = './'
iverbosity = 0
elph = .true.
epbwrite = .true.
epbread = .false.
epwwrite = .true.
epwread = .false.
nbndsub = 13
wannierize = .true.
num_iter = 500
iprint = 2
dis_win_max = 16
dis_froz_max= 13.3
wdata(1)= 'dis_num_iter=600'
proj(1) = 'N:s,p'
proj(2) = 'Li:s'
elecselfen = .false.
phonselfen = .true.
a2f = .false.
band_plot = .true.
wannier_plot= .true.
temps = 0.01
degaussw = 0.1 ! eV
dvscf_dir = '../ph/save'
filukk = './lin3.ukk'
filqf = 'path.dat'
nk1 = 6
nk2 = 6
nk3 = 6
nq1 = 3
nq2 = 3
nq3 = 3
/