Code: Select all
``:oss/
`.+s+. .+ys--yh+ `./ss+.
-sh//yy+` +yy +yy -+h+-oyy
-yh- .oyy/.-sh. .syo-.:sy- /yh
`.-.` `yh+ -oyyyo. `/syys: oys `.`
`/+ssys+-` `sh+ ` oys` .:osyo`
-yh- ./syyooyo` .sys+/oyo--yh/
`yy+ .-:-. `-/+/:` -sh-
/yh. oys
``..---hho---------` .---------..` `.-----.` -hd+---.
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
-yh- ```````````````` ````````` `` `` oys
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
S. Ponce, E. R. Margine, C. Verdi, and F. Giustino,
Comput. Phys. Commun. 209, 116 (2016)
Program EPW v.5.5 starts on 28Nov2022 at 13:24:42
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 28 processors
MPI processes distributed on 1 nodes
K-points division: npool = 28
185286 MiB available memory on the printing compute node when the environment starts
Waiting for input...
Reading input from standard input
Reading supplied temperature list.
Reading xml data from directory:
results/PbTaSe2.save/
Message from routine qes_read:control_variablesType:
fcp: wrong number of occurrences
Message from routine qes_read:control_variablesType:
rism: wrong number of occurrences
Message from routine qexsd_readschema :
input info not found or not readable in xml file
IMPORTANT: XC functional enforced from input :
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 1177 475 187 90067 22783 5619
Using Slab Decomposition
Reading collected, re-writing distributed wavefunctions
--
bravais-lattice index = 0
lattice parameter (a_0) = 6.5546 a.u.
unit-cell volume = 667.6154 (a.u.)^3
number of atoms/cell = 4
number of atomic types = 3
kinetic-energy cut-off = 40.0000 Ry
charge density cut-off = 400.0000 Ry
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
celldm(1)= 6.55461 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( 1.0000 0.0000 0.0000 )
a(2) = ( -0.5000 0.8660 0.0000 )
a(3) = ( 0.0000 0.0000 2.7375 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( 1.0000 0.5774 0.0000 )
b(2) = ( 0.0000 1.1547 0.0000 )
b(3) = ( 0.0000 0.0000 0.3653 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (a_0 units)
1 Ta 180.9479 tau( 1) = ( 0.00000 0.00000 1.36875 )
2 Pb 207.2000 tau( 2) = ( 0.50000 0.28868 0.00000 )
3 Se 78.9600 tau( 3) = ( 0.50000 0.28868 0.89085 )
4 Se 78.9600 tau( 4) = ( 0.50000 0.28868 1.84666 )
13 Sym.Ops. (with q -> -q+G )
G cutoff = 435.3059 ( 90067 G-vectors) FFT grid: ( 45, 45,120)
G cutoff = 174.1224 ( 22783 G-vectors) smooth grid: ( 27, 27, 27)
number of k points= 72 gaussian broad. (Ry)= 0.0200 ngauss = 1
cart. coord. in units 2pi/a_0
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0277778
k( 2) = ( 0.0000000 0.0000000 0.1826484), wk = 0.0277778
k( 3) = ( 0.0000000 0.1924501 0.0000000), wk = 0.0277778
k( 4) = ( 0.0000000 0.1924501 0.1826484), wk = 0.0277778
k( 5) = ( 0.0000000 0.3849002 0.0000000), wk = 0.0277778
k( 6) = ( 0.0000000 0.3849002 0.1826484), wk = 0.0277778
k( 7) = ( 0.0000000 0.5773503 0.0000000), wk = 0.0277778
k( 8) = ( 0.0000000 0.5773503 0.1826484), wk = 0.0277778
k( 9) = ( 0.0000000 0.7698004 0.0000000), wk = 0.0277778
k( 10) = ( 0.0000000 0.7698004 0.1826484), wk = 0.0277778
k( 11) = ( 0.0000000 0.9622504 0.0000000), wk = 0.0277778
k( 12) = ( 0.0000000 0.9622504 0.1826484), wk = 0.0277778
k( 13) = ( 0.1666667 0.0962250 0.0000000), wk = 0.0277778
k( 14) = ( 0.1666667 0.0962250 0.1826484), wk = 0.0277778
k( 15) = ( 0.1666667 0.2886751 0.0000000), wk = 0.0277778
k( 16) = ( 0.1666667 0.2886751 0.1826484), wk = 0.0277778
k( 17) = ( 0.1666667 0.4811252 0.0000000), wk = 0.0277778
k( 18) = ( 0.1666667 0.4811252 0.1826484), wk = 0.0277778
k( 19) = ( 0.1666667 0.6735753 0.0000000), wk = 0.0277778
k( 20) = ( 0.1666667 0.6735753 0.1826484), wk = 0.0277778
k( 21) = ( 0.1666667 0.8660254 0.0000000), wk = 0.0277778
k( 22) = ( 0.1666667 0.8660254 0.1826484), wk = 0.0277778
k( 23) = ( 0.1666667 1.0584755 0.0000000), wk = 0.0277778
k( 24) = ( 0.1666667 1.0584755 0.1826484), wk = 0.0277778
k( 25) = ( 0.3333333 0.1924501 0.0000000), wk = 0.0277778
k( 26) = ( 0.3333333 0.1924501 0.1826484), wk = 0.0277778
k( 27) = ( 0.3333333 0.3849002 0.0000000), wk = 0.0277778
k( 28) = ( 0.3333333 0.3849002 0.1826484), wk = 0.0277778
k( 29) = ( 0.3333333 0.5773503 0.0000000), wk = 0.0277778
k( 30) = ( 0.3333333 0.5773503 0.1826484), wk = 0.0277778
k( 31) = ( 0.3333333 0.7698004 0.0000000), wk = 0.0277778
k( 32) = ( 0.3333333 0.7698004 0.1826484), wk = 0.0277778
k( 33) = ( 0.3333333 0.9622505 0.0000000), wk = 0.0277778
k( 34) = ( 0.3333333 0.9622505 0.1826484), wk = 0.0277778
k( 35) = ( 0.3333333 1.1547005 0.0000000), wk = 0.0277778
k( 36) = ( 0.3333333 1.1547005 0.1826484), wk = 0.0277778
k( 37) = ( 0.5000000 0.2886751 0.0000000), wk = 0.0277778
k( 38) = ( 0.5000000 0.2886751 0.1826484), wk = 0.0277778
k( 39) = ( 0.5000000 0.4811252 0.0000000), wk = 0.0277778
k( 40) = ( 0.5000000 0.4811252 0.1826484), wk = 0.0277778
k( 41) = ( 0.5000000 0.6735753 0.0000000), wk = 0.0277778
k( 42) = ( 0.5000000 0.6735753 0.1826484), wk = 0.0277778
k( 43) = ( 0.5000000 0.8660254 0.0000000), wk = 0.0277778
k( 44) = ( 0.5000000 0.8660254 0.1826484), wk = 0.0277778
k( 45) = ( 0.5000000 1.0584755 0.0000000), wk = 0.0277778
k( 46) = ( 0.5000000 1.0584755 0.1826484), wk = 0.0277778
k( 47) = ( 0.5000000 1.2509256 0.0000000), wk = 0.0277778
k( 48) = ( 0.5000000 1.2509256 0.1826484), wk = 0.0277778
k( 49) = ( 0.6666667 0.3849002 0.0000000), wk = 0.0277778
k( 50) = ( 0.6666667 0.3849002 0.1826484), wk = 0.0277778
k( 51) = ( 0.6666667 0.5773503 0.0000000), wk = 0.0277778
k( 52) = ( 0.6666667 0.5773503 0.1826484), wk = 0.0277778
k( 53) = ( 0.6666667 0.7698004 0.0000000), wk = 0.0277778
k( 54) = ( 0.6666667 0.7698004 0.1826484), wk = 0.0277778
k( 55) = ( 0.6666667 0.9622505 0.0000000), wk = 0.0277778
k( 56) = ( 0.6666667 0.9622505 0.1826484), wk = 0.0277778
k( 57) = ( 0.6666667 1.1547005 0.0000000), wk = 0.0277778
k( 58) = ( 0.6666667 1.1547005 0.1826484), wk = 0.0277778
k( 59) = ( 0.6666667 1.3471506 0.0000000), wk = 0.0277778
k( 60) = ( 0.6666667 1.3471506 0.1826484), wk = 0.0277778
k( 61) = ( 0.8333333 0.4811252 0.0000000), wk = 0.0277778
k( 62) = ( 0.8333333 0.4811252 0.1826484), wk = 0.0277778
k( 63) = ( 0.8333333 0.6735753 0.0000000), wk = 0.0277778
k( 64) = ( 0.8333333 0.6735753 0.1826484), wk = 0.0277778
k( 65) = ( 0.8333333 0.8660254 0.0000000), wk = 0.0277778
k( 66) = ( 0.8333333 0.8660254 0.1826484), wk = 0.0277778
k( 67) = ( 0.8333333 1.0584755 0.0000000), wk = 0.0277778
k( 68) = ( 0.8333333 1.0584755 0.1826484), wk = 0.0277778
k( 69) = ( 0.8333333 1.2509256 0.0000000), wk = 0.0277778
k( 70) = ( 0.8333333 1.2509256 0.1826484), wk = 0.0277778
k( 71) = ( 0.8333333 1.4433757 0.0000000), wk = 0.0277778
k( 72) = ( 0.8333333 1.4433757 0.1826484), wk = 0.0277778
PseudoPot. # 1 for Ta read from file:
../../Ta.SG15.PBE.UPF
MD5 check sum: ef119c940e4415cb7ea1f0910f6c5d17
Pseudo is Norm-conserving, Zval = 13.0
Generated using ONCVPSP code by D. R. Hamann
Using radial grid of 1450 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
PseudoPot. # 2 for Pb read from file:
../../Pb-d.SG15.PBE.UPF
MD5 check sum: 7c0e769f916e6b90472b3c5f74a49b57
Pseudo is Norm-conserving, Zval = 14.0
Generated using ONCVPSP code by D. R. Hamann
Using radial grid of 1678 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
PseudoPot. # 3 for Se read from file:
../../Se.SG15.PBE.UPF
MD5 check sum: 7f1a721d25da6d3b48fe69a3bfe535e5
Pseudo is Norm-conserving, Zval = 6.0
Generated using ONCVPSP code by D. R. Hamann
Using radial grid of 1214 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
EPW : 0.93s CPU 1.23s WALL
EPW : 2.08s CPU 2.39s WALL
-------------------------------------------------------------------
Wannierization on 6 x 6 x 2 electronic grid
-------------------------------------------------------------------
Spin CASE ( default = unpolarized )
Initializing Wannier90
Initial Wannier projections
( 0.66667 0.33333 0.32542) : l = 1 mr = 1
( 0.66667 0.33333 0.32542) : l = 1 mr = 2
( 0.66667 0.33333 0.32542) : l = 1 mr = 3
( 0.66667 0.33333 0.67458) : l = 1 mr = 1
( 0.66667 0.33333 0.67458) : l = 1 mr = 2
( 0.66667 0.33333 0.67458) : l = 1 mr = 3
( 0.66667 0.33333 0.00000) : l = 1 mr = 1
( 0.66667 0.33333 0.00000) : l = 1 mr = 2
( 0.66667 0.33333 0.00000) : l = 1 mr = 3
( 0.00000 0.00000 0.50000) : l = 2 mr = 1
( 0.00000 0.00000 0.50000) : l = 2 mr = 2
( 0.00000 0.00000 0.50000) : l = 2 mr = 3
( 0.00000 0.00000 0.50000) : l = 2 mr = 4
( 0.00000 0.00000 0.50000) : l = 2 mr = 5
- Number of bands is ( 32)
- Number of total bands is ( 32)
- Number of excluded bands is ( 0)
- Number of wannier functions is ( 14)
- All guiding functions are given
Reading data about k-point neighbours
- All neighbours are found
AMN
k points = 72 in 28 pools
1 of 3 on ionode
2 of 3 on ionode
3 of 3 on ionode
AMN calculated
MMN
k points = 72 in 28 pools
1 of 3 on ionode
2 of 3 on ionode
3 of 3 on ionode
MMN calculated
Running Wannier90
Wannier Function centers (cartesian, alat) and spreads (ang):
( 0.50021 0.24597 0.83591) : 1.86447
( 0.49977 0.28692 0.88410) : 1.83476
( 0.50002 0.33378 0.86678) : 1.84081
( 0.49978 0.24593 1.90155) : 1.86440
( 0.50024 0.28692 1.85340) : 1.83475
( 0.49998 0.33381 1.87075) : 1.84087
( 0.50000 0.28867 0.00000) : 3.47454
( 0.50000 0.28966 0.00000) : 3.19187
( 0.50000 0.28764 -0.00000) : 3.19496
( -0.00000 0.00011 1.36875) : 1.96134
( 0.00000 -0.00483 1.36872) : 1.87180
( -0.00000 0.00475 1.36876) : 1.87420
( -0.00000 0.04908 1.36875) : 1.99983
( 0.00000 -0.04904 1.36877) : 2.00387
-------------------------------------------------------------------
WANNIER : 15.22s CPU 20.14s WALL ( 1 calls)
-------------------------------------------------------------------
Calculating kgmap
Progress kgmap: ########################################
kmaps : 0.08s CPU 0.57s WALL ( 1 calls)
Symmetries of Bravais lattice: 24
Symmetries of crystal: 12
===================================================================
irreducible q point # 1
===================================================================
Symmetries of small group of q: 12
in addition sym. q -> -q+G:
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 0.000000000
Imposing acoustic sum rule on the dynamical matrix
q( 1 ) = ( 0.0000000 0.0000000 0.0000000 )
===================================================================
irreducible q point # 2
===================================================================
Symmetries of small group of q: 12
in addition sym. q -> -q+G:
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 -0.182648357
q( 2 ) = ( 0.0000000 0.0000000 -0.1826484 )
===================================================================
irreducible q point # 3
===================================================================
Symmetries of small group of q: 4
Number of q in the star = 3
List of q in the star:
1 0.000000000 0.192450090 0.000000000
2 0.166666667 -0.096225044 0.000000000
3 -0.166666667 -0.096225045 0.000000000
In addition there is the -q list:
1 0.000000000 -0.192450090 0.000000000
2 -0.166666667 0.096225044 0.000000000
3 0.166666667 0.096225045 0.000000000
q( 3 ) = ( 0.0000000 0.1924501 0.0000000 )
q( 4 ) = ( 0.0000000 -0.1924501 0.0000000 )
q( 5 ) = ( 0.1666667 -0.0962250 0.0000000 )
q( 6 ) = ( -0.1666667 0.0962250 0.0000000 )
q( 7 ) = ( -0.1666667 -0.0962250 0.0000000 )
q( 8 ) = ( 0.1666667 0.0962250 0.0000000 )
===================================================================
irreducible q point # 4
===================================================================
Symmetries of small group of q: 4
Number of q in the star = 3
List of q in the star:
1 0.000000000 0.192450090 -0.182648357
2 0.166666667 -0.096225044 0.182648357
3 -0.166666667 -0.096225045 0.182648357
In addition there is the -q list:
1 0.000000000 -0.192450090 0.182648357
2 -0.166666667 0.096225044 -0.182648357
3 0.166666667 0.096225045 -0.182648357
q( 9 ) = ( 0.0000000 0.1924501 -0.1826484 )
q( 10 ) = ( 0.0000000 -0.1924501 0.1826484 )
q( 11 ) = ( 0.1666667 -0.0962250 0.1826484 )
q( 12 ) = ( -0.1666667 0.0962250 -0.1826484 )
q( 13 ) = ( -0.1666667 -0.0962250 0.1826484 )
q( 14 ) = ( 0.1666667 0.0962250 -0.1826484 )
===================================================================
irreducible q point # 5
===================================================================
Symmetries of small group of q: 4
Number of q in the star = 3
List of q in the star:
1 0.000000000 0.384900180 0.000000000
2 0.333333333 -0.192450089 0.000000000
3 -0.333333333 -0.192450091 0.000000000
In addition there is the -q list:
1 0.000000000 -0.384900180 0.000000000
2 -0.333333333 0.192450089 0.000000000
3 0.333333333 0.192450091 0.000000000
q( 15 ) = ( 0.0000000 0.3849002 0.0000000 )
q( 16 ) = ( 0.0000000 -0.3849002 0.0000000 )
q( 17 ) = ( 0.3333333 -0.1924501 0.0000000 )
q( 18 ) = ( -0.3333333 0.1924501 0.0000000 )
q( 19 ) = ( -0.3333333 -0.1924501 0.0000000 )
q( 20 ) = ( 0.3333333 0.1924501 0.0000000 )
===================================================================
irreducible q point # 6
===================================================================
Symmetries of small group of q: 4
Number of q in the star = 3
List of q in the star:
1 0.000000000 0.384900180 -0.182648357
2 0.333333333 -0.192450089 0.182648357
3 -0.333333333 -0.192450091 0.182648357
In addition there is the -q list:
1 0.000000000 -0.384900180 0.182648357
2 -0.333333333 0.192450089 -0.182648357
3 0.333333333 0.192450091 -0.182648357
q( 21 ) = ( 0.0000000 0.3849002 -0.1826484 )
q( 22 ) = ( 0.0000000 -0.3849002 0.1826484 )
q( 23 ) = ( 0.3333333 -0.1924501 0.1826484 )
q( 24 ) = ( -0.3333333 0.1924501 -0.1826484 )
q( 25 ) = ( -0.3333333 -0.1924501 0.1826484 )
q( 26 ) = ( 0.3333333 0.1924501 -0.1826484 )
===================================================================
irreducible q point # 7
===================================================================
Symmetries of small group of q: 4
in addition sym. q -> -q+G:
Number of q in the star = 3
List of q in the star:
1 0.000000000 -0.577350270 0.000000000
2 -0.500000000 0.288675133 0.000000000
3 0.500000000 0.288675136 0.000000000
q( 27 ) = ( 0.0000000 -0.5773503 0.0000000 )
q( 28 ) = ( -0.5000000 0.2886751 0.0000000 )
q( 29 ) = ( 0.5000000 0.2886751 0.0000000 )
===================================================================
irreducible q point # 8
===================================================================
Symmetries of small group of q: 4
in addition sym. q -> -q+G:
Number of q in the star = 3
List of q in the star:
1 0.000000000 -0.577350270 -0.182648357
2 -0.500000000 0.288675133 0.182648357
3 0.500000000 0.288675136 0.182648357
q( 30 ) = ( 0.0000000 -0.5773503 -0.1826484 )
q( 31 ) = ( -0.5000000 0.2886751 0.1826484 )
q( 32 ) = ( 0.5000000 0.2886751 0.1826484 )
===================================================================
irreducible q point # 9
===================================================================
Symmetries of small group of q: 2
Number of q in the star = 6
List of q in the star:
1 0.166666667 0.288675135 0.000000000
2 -0.166666667 0.288675134 0.000000000
3 0.166666667 -0.288675134 0.000000000
4 -0.333333333 -0.000000001 0.000000000
5 -0.166666667 -0.288675135 0.000000000
6 0.333333333 0.000000001 0.000000000
q( 33 ) = ( 0.1666667 0.2886751 0.0000000 )
q( 34 ) = ( -0.1666667 0.2886751 0.0000000 )
q( 35 ) = ( 0.1666667 -0.2886751 0.0000000 )
q( 36 ) = ( -0.3333333 -0.0000000 0.0000000 )
q( 37 ) = ( -0.1666667 -0.2886751 0.0000000 )
q( 38 ) = ( 0.3333333 0.0000000 0.0000000 )
===================================================================
irreducible q point # 10
===================================================================
Symmetries of small group of q: 2
Number of q in the star = 6
List of q in the star:
1 0.166666667 0.288675135 -0.182648357
2 -0.166666667 0.288675134 0.182648357
3 0.166666667 -0.288675134 0.182648357
4 -0.333333333 -0.000000001 0.182648357
5 -0.166666667 -0.288675135 0.182648357
6 0.333333333 0.000000001 0.182648357
q( 39 ) = ( 0.1666667 0.2886751 -0.1826484 )
q( 40 ) = ( -0.1666667 0.2886751 0.1826484 )
q( 41 ) = ( 0.1666667 -0.2886751 0.1826484 )
q( 42 ) = ( -0.3333333 -0.0000000 0.1826484 )
q( 43 ) = ( -0.1666667 -0.2886751 0.1826484 )
q( 44 ) = ( 0.3333333 0.0000000 0.1826484 )
===================================================================
irreducible q point # 11
===================================================================
Symmetries of small group of q: 2
Number of q in the star = 6
List of q in the star:
1 0.166666667 0.481125225 0.000000000
2 -0.166666667 0.481125224 0.000000000
3 0.333333333 -0.384900179 0.000000000
4 -0.500000000 -0.096225047 0.000000000
5 -0.333333333 -0.384900181 0.000000000
6 0.500000000 -0.096225043 0.000000000
In addition there is the -q list:
1 -0.166666667 -0.481125225 0.000000000
2 0.166666667 -0.481125224 0.000000000
3 -0.333333333 0.384900179 0.000000000
4 0.500000000 0.096225047 0.000000000
5 0.333333333 0.384900181 0.000000000
6 -0.500000000 0.096225043 0.000000000
q( 45 ) = ( 0.1666667 0.4811252 0.0000000 )
q( 46 ) = ( -0.1666667 -0.4811252 0.0000000 )
q( 47 ) = ( -0.1666667 0.4811252 0.0000000 )
q( 48 ) = ( 0.1666667 -0.4811252 0.0000000 )
q( 49 ) = ( 0.3333333 -0.3849002 0.0000000 )
q( 50 ) = ( -0.3333333 0.3849002 0.0000000 )
q( 51 ) = ( -0.5000000 -0.0962250 0.0000000 )
q( 52 ) = ( 0.5000000 0.0962250 0.0000000 )
q( 53 ) = ( -0.3333333 -0.3849002 0.0000000 )
q( 54 ) = ( 0.3333333 0.3849002 0.0000000 )
q( 55 ) = ( 0.5000000 -0.0962250 0.0000000 )
q( 56 ) = ( -0.5000000 0.0962250 0.0000000 )
===================================================================
irreducible q point # 12
===================================================================
Symmetries of small group of q: 2
Number of q in the star = 6
List of q in the star:
1 0.166666667 0.481125225 -0.182648357
2 -0.166666667 0.481125224 0.182648357
3 0.333333333 -0.384900179 0.182648357
4 -0.500000000 -0.096225047 0.182648357
5 -0.333333333 -0.384900181 0.182648357
6 0.500000000 -0.096225043 0.182648357
In addition there is the -q list:
1 -0.166666667 -0.481125225 0.182648357
2 0.166666667 -0.481125224 -0.182648357
3 -0.333333333 0.384900179 -0.182648357
4 0.500000000 0.096225047 -0.182648357
5 0.333333333 0.384900181 -0.182648357
6 -0.500000000 0.096225043 -0.182648357
q( 57 ) = ( 0.1666667 0.4811252 -0.1826484 )
q( 58 ) = ( -0.1666667 -0.4811252 0.1826484 )
q( 59 ) = ( -0.1666667 0.4811252 0.1826484 )
q( 60 ) = ( 0.1666667 -0.4811252 -0.1826484 )
q( 61 ) = ( 0.3333333 -0.3849002 0.1826484 )
q( 62 ) = ( -0.3333333 0.3849002 -0.1826484 )
q( 63 ) = ( -0.5000000 -0.0962250 0.1826484 )
q( 64 ) = ( 0.5000000 0.0962250 -0.1826484 )
q( 65 ) = ( -0.3333333 -0.3849002 0.1826484 )
q( 66 ) = ( 0.3333333 0.3849002 -0.1826484 )
q( 67 ) = ( 0.5000000 -0.0962250 0.1826484 )
q( 68 ) = ( -0.5000000 0.0962250 -0.1826484 )
===================================================================
irreducible q point # 13
===================================================================
Symmetries of small group of q: 6
Number of q in the star = 2
List of q in the star:
1 0.333333333 0.577350271 0.000000000
2 -0.333333333 0.577350269 0.000000000
q( 69 ) = ( 0.3333333 0.5773503 0.0000000 )
q( 70 ) = ( -0.3333333 0.5773503 0.0000000 )
===================================================================
irreducible q point # 14
===================================================================
Symmetries of small group of q: 6
Number of q in the star = 2
List of q in the star:
1 0.333333333 0.577350271 -0.182648357
2 -0.333333333 0.577350269 0.182648357
q( 71 ) = ( 0.3333333 0.5773503 -0.1826484 )
q( 72 ) = ( -0.3333333 0.5773503 0.1826484 )
Writing epmatq on .epb files
The .epb files have been correctly written
Band disentanglement is used: nbndsub = 14
Use zone-centred Wigner-Seitz cells
Number of WS vectors for electrons 129
Number of WS vectors for phonons 129
Number of WS vectors for electron-phonon 129
Maximum number of cores for efficient parallelization 1548
Results may improve by using use_ws == .TRUE.
Velocity matrix elements calculated
Bloch2wane: 1 / 72
Bloch2wane: 2 / 72
Bloch2wane: 3 / 72
Bloch2wane: 4 / 72
Bloch2wane: 5 / 72
Bloch2wane: 6 / 72
Bloch2wane: 7 / 72
Bloch2wane: 8 / 72
Bloch2wane: 9 / 72
Bloch2wane: 10 / 72
Bloch2wane: 11 / 72
Bloch2wane: 12 / 72
Bloch2wane: 13 / 72
Bloch2wane: 14 / 72
Bloch2wane: 15 / 72
Bloch2wane: 16 / 72
Bloch2wane: 17 / 72
Bloch2wane: 18 / 72
Bloch2wane: 19 / 72
Bloch2wane: 20 / 72
Bloch2wane: 21 / 72
Bloch2wane: 22 / 72
Bloch2wane: 23 / 72
Bloch2wane: 24 / 72
Bloch2wane: 25 / 72
Bloch2wane: 26 / 72
Bloch2wane: 27 / 72
Bloch2wane: 28 / 72
Bloch2wane: 29 / 72
Bloch2wane: 30 / 72
Bloch2wane: 31 / 72
Bloch2wane: 32 / 72
Bloch2wane: 33 / 72
Bloch2wane: 34 / 72
Bloch2wane: 35 / 72
Bloch2wane: 36 / 72
Bloch2wane: 37 / 72
Bloch2wane: 38 / 72
Bloch2wane: 39 / 72
Bloch2wane: 40 / 72
Bloch2wane: 41 / 72
Bloch2wane: 42 / 72
Bloch2wane: 43 / 72
Bloch2wane: 44 / 72
Bloch2wane: 45 / 72
Bloch2wane: 46 / 72
Bloch2wane: 47 / 72
Bloch2wane: 48 / 72
Bloch2wane: 49 / 72
Bloch2wane: 50 / 72
Bloch2wane: 51 / 72
Bloch2wane: 52 / 72
Bloch2wane: 53 / 72
Bloch2wane: 54 / 72
Bloch2wane: 55 / 72
Bloch2wane: 56 / 72
Bloch2wane: 57 / 72
Bloch2wane: 58 / 72
Bloch2wane: 59 / 72
Bloch2wane: 60 / 72
Bloch2wane: 61 / 72
Bloch2wane: 62 / 72
Bloch2wane: 63 / 72
Bloch2wane: 64 / 72
Bloch2wane: 65 / 72
Bloch2wane: 66 / 72
Bloch2wane: 67 / 72
Bloch2wane: 68 / 72
Bloch2wane: 69 / 72
Bloch2wane: 70 / 72
Bloch2wane: 71 / 72
Bloch2wane: 72 / 72
Bloch2wanp: 1 / 5
Bloch2wanp: 2 / 5
Bloch2wanp: 3 / 5
Bloch2wanp: 4 / 5
Bloch2wanp: 5 / 5
Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file
===================================================================
Memory usage: VmHWM = 191Mb
VmPeak = 656Mb
===================================================================
Using uniform q-mesh: 30 30 10
Size of q point mesh for interpolation: 9000
Using uniform MP k-mesh: 60 60 20
Size of k point mesh for interpolation: 13882
Max number of k points per pool: 496
Fermi energy coarse grid = 9.951128 eV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Error in routine efermig (1):
internal error, cannot bracket Ef
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
stopping ...
There are 82691 lines in the wout file. I put the file in the compressed package. Please have a look