In order to try and reduce the computational demand for the problem we are looking at, we're testing to see if we can use only the irreducible k-points in the BZ (using symmetry to identify the equivalent k-points from the full dense k-grid (but still using the full dense q-grid)). To test this we've started by looking at two examples: B-doped diamond, and pure silicon. From our tests we noticed an unexpected behavior. We have two questions we're hoping someone can help us with:
QUESTION 1:
When comparing the electron eigenenergy for a single k-point when using the irreducible k-grid vs. the full k-grid, it appears equivalent k-points have slightly different energies. This doesn't happen for diamond, but does happen for silicon (energies differ by as much as 80 meV, which can affect the self-energy calculation). Below are sets of eigenenergies at equivalent kpoints: the first two sets are for diamond (the first set with the irreducible k-grid, the second set with the full k-grid), and the next two sets are for silicon. We used both a 20x20x20 k-grid (reduced down to 256 irreducible k-points) and 20x20x20 q-grid to calculate the electron self energies for B-doped diamond and pure silicon.
Is there any reason why for diamond the energies at equivalent k-points would be identical, but would be different in the case of silicon? Note we tried varying the Gaussian broadening with the
values of 0.1, 0.03 and 0.01 eV, but the issue persists with silicon.
QUESTION 2:
In principle, will using the irreducible k-grid instead of the full k-grid in EPW give identical results for the electron self-energy calculations (still using the full q-grid)?
Code: Select all
----- LIST OF EIGENENERGIES AT EQUIVALENT K-POINTS -----
DIAMOND:
ik=178 in the irreducible k-grid:
ik = 178 coord.: 0.0500000 0.4000000 -0.4500000
E( 1 )= -13.4270 eV Re[Sigma]= -30.933681 meV Im[Sigma]= 24.869431 meV
E( 2 )= -10.3825 eV Re[Sigma]= -4.229391 meV Im[Sigma]= 61.216478 meV
E( 3 )= -7.4753 eV Re[Sigma]= -13.901492 meV Im[Sigma]= 66.070361 meV
E( 4 )= -5.7127 eV Re[Sigma]= -15.327615 meV Im[Sigma]= 97.407976 meV
ik=6968 in the full k-grid (equivalent to the one above):
ik = 6968 coord.: 0.8500000 0.4000000 0.3500000
E( 1 )= -13.4270 eV Re[Sigma]= -30.952174 meV Im[Sigma]= 24.860316 meV
E( 2 )= -10.3825 eV Re[Sigma]= -4.215018 meV Im[Sigma]= 61.172779 meV
E( 3 )= -7.4753 eV Re[Sigma]= -13.822378 meV Im[Sigma]= 66.013742 meV
E( 4 )= -5.7127 eV Re[Sigma]= -15.250938 meV Im[Sigma]= 97.573909 meV
SILICON:
ik=178 in the irreducible k-grid:
ik = 178 coord.: 0.0500000 0.4000000 -0.4500000
E( 2 )= -7.5793 eV Re[Sigma]= -68.528328 meV Im[Sigma]= 47.413559 meV
E( 3 )= -4.2495 eV Re[Sigma]= -40.153585 meV Im[Sigma]= 35.669718 meV
E( 4 )= -3.3577 eV Re[Sigma]= -35.255624 meV Im[Sigma]= 55.421246 meV
E( 5 )= 0.5776 eV Re[Sigma]= 0.617174 meV Im[Sigma]= 14.450487 meV
E( 6 )= 2.1666 eV Re[Sigma]= -1.575815 meV Im[Sigma]= 79.771434 meV
E( 7 )= 7.5324 eV Re[Sigma]= 80.555970 meV Im[Sigma]= 23.258165 meV
E( 8 )= 8.2987 eV Re[Sigma]= 40.674666 meV Im[Sigma]= 4.181535 meV
ik=6968 in the full k-grid (equivalent to the one above):
ik = 6968 coord.: 0.8500000 0.4000000 0.3500000
E( 2 )= -7.5787 eV Re[Sigma]= -68.242478 meV Im[Sigma]= 47.824544 meV
E( 3 )= -4.2153 eV Re[Sigma]= -37.682325 meV Im[Sigma]= 34.277042 meV
E( 4 )= -3.2997 eV Re[Sigma]= -32.718397 meV Im[Sigma]= 49.295667 meV
E( 5 )= 0.5991 eV Re[Sigma]= -1.460534 meV Im[Sigma]= 16.483447 meV
E( 6 )= 2.1402 eV Re[Sigma]= -7.812829 meV Im[Sigma]= 75.284735 meV
E( 7 )= 7.4590 eV Re[Sigma]= 84.012895 meV Im[Sigma]= 50.947981 meV
E( 8 )= 8.2740 eV Re[Sigma]= 39.402005 meV Im[Sigma]= 2.551329 meV
Thank you,
Vahid
Vahid Askarpour
Department of Physics and Atmospheric Science
Dalhousie University,
Halifax, NS, Canada