well i had a several problems when i calculate the anisotropic superconducting gap in the first calculation i had 9 K° in the critical temperature and now is totally different also the calculation need some memory and i have 32go which is fair enough for it
can someone help me to find the good results
best
here attached the last part of the output
===================================================================
Eliashberg Spectral Function in the Migdal Approximation
===================================================================
lambda : 1.2556402
lambda_tr : 13.1165215
Estimated Allen-Dynes Tc
logavg = 0.0006359 l_a2f = 1.2921504
mu = 0.10 Tc = 9.808471650344 K
mu = 0.12 Tc = 9.129227645383 K
mu = 0.14 Tc = 8.454883352153 K
mu = 0.16 Tc = 7.787349799824 K
mu = 0.18 Tc = 7.128747303870 K
mu = 0.20 Tc = 6.481416687512 K
a2F : 0.24s CPU 0.24s WALL ( 1 calls)
===================================================================
Solve anisotropic Eliashberg equations
===================================================================
Finish reading freq file
Fermi level (eV) = -3.5501000000E+00
DOS(states/spin/eV/Unit Cell) = 1.4109068289E+00
Electron smearing (eV) = 5.0000000000E-01
Fermi window (eV) = 1.0000000000E+10
Nr k-points within the Fermi shell = 900 out of 900
12 bands within the Fermi window
Finish reading egnv file
Max nr of q-points = 225
Finish reading ikmap files
Start reading .ephmat files
Finish reading .ephmat files
Electron-phonon coupling strength = 6.4866515
Estimated Allen-Dynes Tc = 4.057478 K for muc = 0.00000
Estimated w_log in Allen-Dynes Tc = 1.393499 meV
Estimated BCS superconducting gap = 0.615378 meV
WARNING WARNING WARNING
The code may crash since tempsmin = 300.000 K is larger than Allen-Dynes Tc = 4.057 K
temp( 1) = 300.00000 K
Solve anisotropic Eliashberg equations on imaginary-axis
Total number of frequency points nsiw( 1) = 5
Cutoff frequency wscut = 0.8934
Size of allocated memory per pool: ~= 1.8510 Gb
iter ethr znormi deltai [meV]
1 2.279336E+00 6.148708E+00 5.215160E-01
2 1.339930E-01 6.148729E+00 4.775872E-01
3 3.092487E-02 6.148721E+00 4.700531E-01
4 3.973105E-01 6.148721E+00 3.816094E-01
5 8.256705E-02 6.148759E+00 4.011637E-01
6 7.259228E-03 6.148760E+00 3.992406E-01
7 8.316652E-02 6.148771E+00 3.773703E-01
8 3.576812E-02 6.148775E+00 3.677818E-01
9 1.301273E-02 6.148775E+00 3.639366E-01
10 7.597991E-03 6.148777E+00 3.605009E-01
11 8.908209E-03 6.148779E+00 3.566948E-01
12 1.594154E-02 6.148781E+00 3.516557E-01
13 2.915997E-02 6.148784E+00 3.449029E-01
14 2.321005E-02 6.148786E+00 3.401298E-01
15 1.141880E-02 6.148787E+00 3.371709E-01
16 2.830961E-02 6.148790E+00 3.300729E-01
17 1.500637E-02 6.148791E+00 3.254408E-01
18 1.843971E-02 6.148793E+00 3.215237E-01
19 2.570052E-02 6.148795E+00 3.156685E-01
20 8.478597E-03 6.148795E+00 3.149421E-01
21 4.826951E-03 6.148796E+00 3.131499E-01
22 1.981656E-02 6.148798E+00 3.084268E-01
23 3.956379E-02 6.148801E+00 3.003407E-01
24 6.392236E-03 6.148801E+00 2.984998E-01
25 2.638171E-02 6.148803E+00 2.926978E-01
26 2.599393E-02 6.148805E+00 2.867723E-01
27 9.901237E-03 6.148806E+00 2.844691E-01
28 1.510105E-02 6.148807E+00 2.813973E-01
29 9.204302E-03 6.148804E+00 2.819870E-01
30 2.949812E-02 6.148809E+00 2.754994E-01
31 1.216517E-02 6.148809E+00 2.726969E-01
32 2.799378E-02 6.148812E+00 2.675462E-01
33 2.466141E-02 6.148814E+00 2.623058E-01
34 2.113142E-02 6.148815E+00 2.581886E-01
35 1.583407E-02 6.148816E+00 2.549341E-01
36 5.539559E-03 6.148816E+00 2.533955E-01
37 2.246924E-02 6.148818E+00 2.490714E-01
38 1.881116E-02 6.148819E+00 2.452244E-01
39 2.259623E-02 6.148820E+00 2.408130E-01
40 1.292819E-02 6.148821E+00 2.382974E-01
41 1.600064E-02 6.148822E+00 2.352622E-01
42 2.272010E-02 6.148823E+00 2.310276E-01
43 2.714419E-02 6.148824E+00 2.260608E-01
44 3.215957E-03 6.148824E+00 2.254820E-01
45 2.561634E-02 6.148825E+00 2.208533E-01
46 1.520502E-03 6.148825E+00 2.210087E-01
47 2.851552E-02 6.148826E+00 2.159828E-01
48 3.137343E-02 6.148828E+00 2.104584E-01
49 1.815435E-02 6.148829E+00 2.073619E-01
50 1.036164E-02 6.148830E+00 2.056239E-01
51 1.839332E-02 6.148830E+00 2.024942E-01
52 1.414453E-02 6.148830E+00 2.002513E-01
53 1.041734E-02 6.148827E+00 1.985882E-01
54 1.343623E-02 6.148825E+00 1.964410E-01
55 2.288499E-02 6.148833E+00 1.926973E-01
56 2.257672E-02 6.148833E+00 1.891405E-01
57 6.719260E-03 6.148833E+00 1.879992E-01
58 3.573062E-02 6.148833E+00 1.822496E-01
59 3.703434E-03 6.148835E+00 1.818878E-01
60 2.047280E-02 6.148836E+00 1.788538E-01
61 2.709115E-02 6.148837E+00 1.750454E-01
62 2.268132E-02 6.148837E+00 1.718628E-01
63 2.077246E-02 6.148838E+00 1.689050E-01
64 1.209122E-02 6.148838E+00 1.671263E-01
65 1.588000E-02 6.148839E+00 1.648511E-01
66 9.436507E-03 6.148839E+00 1.635016E-01
67 9.937231E-03 6.148839E+00 1.620607E-01
68 1.132592E-02 6.148839E+00 1.604860E-01
69 1.246841E-02 6.148839E+00 1.587051E-01
70 2.153758E-02 6.148839E+00 1.560064E-01
71 1.617998E-02 6.148838E+00 1.539079E-01
72 2.001948E-02 6.148840E+00 1.513090E-01
73 1.679955E-02 6.148842E+00 1.490849E-01
74 2.422256E-02 6.148842E+00 1.461592E-01
75 1.031844E-02 6.148842E+00 1.447960E-01
76 7.840121E-03 6.148842E+00 1.437109E-01
77 8.056942E-03 6.148843E+00 1.426344E-01
78 9.790376E-03 6.148843E+00 1.414219E-01
79 2.868933E-02 6.148843E+00 1.379589E-01
80 1.958513E-02 6.148844E+00 1.357188E-01
81 2.634544E-02 6.148842E+00 1.325607E-01
82 6.357364E-03 6.148835E+00 1.330242E-01
83 2.592034E-02 6.148844E+00 1.299277E-01
84 7.174550E-03 6.148844E+00 1.307198E-01
85 4.660011E-03 6.148845E+00 1.301612E-01
86 1.708138E-02 6.148845E+00 1.281919E-01
87 2.339758E-02 6.148845E+00 1.255578E-01
88 2.286780E-02 6.148846E+00 1.230810E-01
89 2.357628E-02 6.148846E+00 1.205903E-01
90 2.332949E-02 6.148846E+00 1.181633E-01
91 1.825626E-02 6.148847E+00 1.163242E-01
92 1.518087E-02 6.148847E+00 1.147921E-01
93 1.198566E-02 6.148847E+00 1.135441E-01
94 5.807831E-04 6.148847E+00 1.134765E-01
Convergence was reached in nsiter = 94
iaxis_imag : 501.64s CPU 502.00s WALL ( 1 calls)
Pade approximant of anisotropic Eliashberg equations from imaginary-axis to real-axis
Cutoff frequency wscut = 0.8000
Size of allocated memory per pool: ~= 2.1113 Gb
pade Re[znorm] Re[delta] [meV]
4 4.907039E+02 5.098375E-03
Convergence was reached for N = 4 Pade approximants
Size of allocated memory per pool: ~= 2.1113 Gb
raxis_pade : 1.95s CPU 2.12s WALL ( 1 calls)
Analytic continuation of anisotropic Eliashberg equations from imaginary-axis to real-axis
Total number of frequency points nsw = 2500
Cutoff frequency wscut = 0.8000
Size of allocated memory per pool: ~= 2.9347 Gb
Size of allocated memory per pool: ~= 3.0361 Gb
Size of allocated memory per pool: ~= 3.0353 Gb
Size of allocated memory per pool: ~= -1.8074 Gb