I want to calculate the anisotropic superconducting gap of MgB2 according to website:http://epw.org.uk/Documentation/MgB2
First, I try to run phonon dispersion relation to obtain the .dyn* and .dvscf*
there are no problem.
Then, I calculate the epw.x
Code: Select all
[color=#BF0080]epw.in[/color]
--
&inputepw
prefix = 'MgB2',
amass(1) = 24.305,
amass(2) = 10.811
outdir = './'
ep_coupling = .true.
elph = .true.
kmaps = .false.
epbwrite = .true.
epbread = .false.
epwwrite = .true.
epwread = .false.
etf_mem = .true.
nbndsub = 5
nbndskip = 0
wannierize = .true.
num_iter = 500
dis_froz_max= 8.8
proj(1) = 'B:pz'
proj(2) = 'f=0.5,1.0,0.5:s'
proj(3) = 'f=0.0,0.5,0.5:s'
proj(4) = 'f=0.5,0.5,0.5:s'
iverbosity = 2
elinterp = .true.
phinterp = .true.
tshuffle2 = .true.
tphases = .false.
parallel_k = .true.
parallel_q = .false.
eps_acustic = 5.0 ! Lowest boundary for the
ephwrite = .true. ! Writes .ephmat files used when wliasberg = .true.
fsthick = 0.4 ! eV
eptemp = 300 ! K
degaussw = 0.10 ! eV
nsmear = 1
delta_smear = 0.04 ! eV
degaussq = 0.5 ! meV
nqstep = 500
eliashberg = .true.
laniso = .true.
limag = .true.
lpade = .true.
conv_thr_iaxis = 1.0d-2
wscut = 0.525 ! eV Upper limit over frequency integration/summation in the Elisashberg eq
nstemp = 1
tempsmin = 25.00
tempsmax = 30.00
nsiter = 1000
muc = 0.16
dvscf_dir = '../phonons/save'
nk1 = 6
nk2 = 6
nk3 = 6
nq1 = 6
nq2 = 6
nq3 = 6
mp_mesh_k = .true.
nkf1 = 20
nkf2 = 20
nkf3 = 20
nqf1 = 20
nqf2 = 20
nqf3 = 20
/
28 cartesian
0.000000000 0.000000000 0.000000000 0.004629630
0.000000000 0.000000000 0.145933920 0.009259259
0.000000000 0.000000000 0.291867841 0.009259259
0.000000000 0.000000000 -0.437801761 0.004629630
0.000000000 0.192450090 0.000000000 0.027777778
0.000000000 0.192450090 0.145933920 0.055555556
0.000000000 0.192450090 0.291867841 0.055555556
0.000000000 0.192450090 -0.437801761 0.027777778
0.000000000 0.384900179 0.000000000 0.027777778
0.000000000 0.384900179 0.145933920 0.055555556
0.000000000 0.384900179 0.291867841 0.055555556
0.000000000 0.384900179 -0.437801761 0.027777778
0.000000000 -0.577350269 0.000000000 0.013888889
0.000000000 -0.577350269 0.145933920 0.027777778
0.000000000 -0.577350269 0.291867841 0.027777778
0.000000000 -0.577350269 -0.437801761 0.013888889
0.166666667 0.288675135 0.000000000 0.027777778
0.166666667 0.288675135 0.145933920 0.055555556
0.166666667 0.288675135 0.291867841 0.055555556
0.166666667 0.288675135 -0.437801761 0.027777778
0.166666667 0.481125224 0.000000000 0.055555556
0.166666667 0.481125224 0.145933920 0.111111111
0.166666667 0.481125224 0.291867841 0.111111111
0.166666667 0.481125224 -0.437801761 0.055555556
0.333333333 0.577350269 0.000000000 0.009259259
0.333333333 0.577350269 0.145933920 0.018518519
0.333333333 0.577350269 0.291867841 0.018518519
0.333333333 0.577350269 -0.437801761 0.009259259
some of the output is incorrenct
Code: Select all
[color=#FF0000]epw.out[/color]
Symmetries of small group of q: 12
Number of q in the star = 2
List of q in the star:
1 0.333333333 0.577350269 -0.437801761
2 -0.333333333 -0.577350269 -0.437801761
q( 215 ) = ( 0.3333333 0.5773503 -0.4378018 )
q( 216 ) = ( -0.3333333 -0.5773503 -0.4378018 )
Writing epmatq on .epb files
band disentanglement is used: nbndsub = 5
Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file
Reading Hamiltonian, Dynamical matrix and EP vertex in Wann rep from file
Finished reading Wann rep data from file
Using uniform q-mesh: 20 20 20
Size of q point mesh for interpolation: 8000
Using uniform MP k-mesh: 20 20 20
Size of k point mesh for interpolation: 968
Max number of k points per pool: 42
Fermi energy coarse grid = 7.567624 eV
Fermi energy is calculated from the fine k-mesh: Ef = 7.900198 eV
Warning: check if difference with Fermi level fine grid makes sense
===================================================================
ibndmin = 3 ebndmin = 0.551
ibndmax = 5 ebndmax = 0.610
Number of ep-matrix elements per pool : 1701 ~= 13.29 Kb (@ 8 bytes/ DP)
Nr. of irreducible k-points on the uniform grid: 484
Finished writing .ikmap file
Finished mapping k+sign*q onto the fine irreducibe k-mesh
Nr irreducible k-points within the Fermi shell = 104 out of 484
Fermi level (eV) = 0.790019830659852D+01
DOS(states/spin/eV/Unit Cell) = 0.219570491047075D+00
Electron smearing (eV) = 0.100000000000000D+00
Fermi window (eV) = 0.400000000000000D+00
Finished writing .ephmat files
===================================================================
Solve anisotropic Eliashberg equations
===================================================================
Finish reading .freq file
Fermi level (eV) = 7.9001983068E+00
DOS(states/spin/eV/Unit Cell) = 2.1957049093E-01
Electron smearing (eV) = 1.0000000000E-01
Fermi window (eV) = 4.0000000000E-01
Nr irreducible k-points within the Fermi shell = 104 out of 484
2 bands within the Fermi window
Finish reading .egnv file
Max nr of q-points = 1599
Finish reading .ikmap files
Start reading .ephmat files
Finish reading .ephmat files
lambda_max = 221.5756907 lambda_k_max = 1.1007955
Electron-phonon coupling strength = 0.1415293
Estimated Allen-Dynes Tc = *************** K for muc = 0.16000
Estimated BCS superconducting gap = *************** eV
temp( 1) = 25.0000 K
Solve anisotropic Eliashberg equations on imaginary-axis
Total number of frequency points nsiw ( 1 ) = 39
Cutoff frequency wscut = 0.5347
Size of allocated memory per pool : ~= 0.0255 Gb
iter = 1 relerr = 0.557210204D+16 abserr = 0.236761053D+15 Znormi(1) = 0.100392116D+01 Deltai(1) = -0.392920088D-01
iter = 2 relerr = 0.111878749D+00 abserr = 0.427544549D-02 Znormi(1) = 0.100390563D+01 Deltai(1) = -0.347549316D-01
iter = 3 relerr = 0.338365872D-01 abserr = 0.125074400D-02 Znormi(1) = 0.100389517D+01 Deltai(1) = -0.334261973D-01
iter = 4 relerr = 0.309152553D-02 abserr = 0.114630298D-03 Znormi(1) = 0.100389632D+01 Deltai(1) = -0.335476482D-01
Convergence was reached in nsiter = 4
iaxis_imag : 2.43s CPU 2.60s WALL ( 1 calls)
Pade approximant of anisotropic Eliashberg equations from imaginary-axis to real-axis
Cutoff frequency wscut = 0.5250
pade = 36 error = 0.129066073D-01 Re[Znorm(1)] = 0.112393012D+01 Re[Delta(1)] = -0.335820500D-01
raxis_pade : 0.85s CPU 2.27s WALL ( 1 calls)
itemp = 1 total cpu time : 4.87 secs
Unfolding on the coarse grid
elphon_wrap : 682.33s CPU 814.38s WALL ( 1 calls)
INITIALIZATION:
set_drhoc : 5.82s CPU 5.84s WALL ( 217 calls)
init_vloc : 0.33s CPU 0.36s WALL ( 218 calls)
init_us_1 : 1.47s CPU 1.55s WALL ( 218 calls)
Electron-Phonon interpolation
ephwann : 228.62s CPU 262.77s WALL ( 1 calls)
ep-interp : 206.87s CPU 232.76s WALL ( 8000 calls)
Ham: step 1 : 0.00s CPU 0.00s WALL ( 1 calls)
Ham: step 2 : 0.02s CPU 0.03s WALL ( 1 calls)
ep: step 1 : 0.01s CPU 0.04s WALL ( 1944 calls)
ep: step 2 : 3.12s CPU 9.14s WALL ( 1944 calls)
DynW2B : 0.16s CPU 1.16s WALL ( 8000 calls)
HamW2B : 14.12s CPU 14.39s WALL ( 336042 calls)
ephW2Bp : 155.31s CPU 158.38s WALL ( 8000 calls)
ELIASHBERG : 72.32s CPU 75.03s WALL ( 1 calls)
Total program execution
EPW : 16m36.32s CPU 19m33.79s WALL
I find that the lambda_max = 221.5756907 lambda_k_max = 1.1007955
Electron-phonon coupling strength = 0.1415293
Estimated Allen-Dynes Tc = *************** K for muc = 0.16000
Estimated BCS superconducting gap = *************** eV
Is there some unreasonable papameters in the input file (epw.in)?
It's pleasure to get your advice
Best wishes
Cai Cheng
Email: ccheng@iphy.ac.cn
TEl: +86-10-82648045 (office)
Institute of Physics, Chinese Academy of Sciences