I have a question that quite confused me when I calculated MgB2's superconducting gaps following the case in EPW examples.
The first figure is from my calculation, and the second is from article DOI:10.1103/PhysRevB.87.024505.
The question is why my gaps are thin (planus) and long while the ones in the literature are more concentrated (or sharper) ? How can I set the proper input parameters to obtain the same result as the figure from the PRB article ?
k- q-mesh in the 2 calculations are the same, both using 6^3 coarse k-mesh and 6^3 coarse q-mesh, 60^3 fine k-mesh and 30^3 fine q-mesh, and k-mesh in scf step is 24^3.
This is my epw.in file:
Code: Select all
--
&inputepw
prefix = 'MgB2',
amass(1) = 24.305,
amass(2) = 10.811
outdir = './'
ep_coupling = .true.
elph = .true.
kmaps = .false.
epbwrite = .true.
epbread = .false.
epwwrite = .true.
epwread = .false.
etf_mem = 1
nbndsub = 5,
nbndskip = 0
wannierize = .true.
num_iter = 500
dis_froz_max= 8.8
proj(1) = 'B:pz'
proj(2) = 'f=0.5,1.0,0.5:s'
proj(3) = 'f=0.0,0.5,0.5:s'
proj(4) = 'f=0.5,0.5,0.5:s'
iverbosity = 2
eps_acustic = 2.0 ! Lowest boundary for the
ephwrite = .true. ! Writes .ephmat files used when wliasberg = .true.
fsthick = 0.4 ! eV
eptemp = 300 ! K
degaussw = 0.10 ! eV
nsmear = 1
delta_smear = 0.04 ! eV
degaussq = 0.5 ! meV
nqstep = 500
eliashberg = .true.
laniso = .true.
limag = .true.
lpade = .true.
conv_thr_iaxis = 1.0d-5
wscut = 1.0 ! eV Upper limit over frequency integration/summation in the Elisashberg eq
temps(1) = 7
temps(2) = 10
temps(3) = 15
temps(4) = 20
temps(5) = 25
temps(6) = 30
temps(7) = 35
temps(8) = 40
temps(9) = 45
temps(10) = 47.5
temps(11) = 50
nsiter = 500
muc = 0.16
dvscf_dir = '../phonons/save'
nk1 = 6
nk2 = 6
nk3 = 6
nq1 = 6
nq2 = 6
nq3 = 6
mp_mesh_k = .true.
nkf1 = 60
nkf2 = 60
nkf3 = 60
nqf1 = 30
nqf2 = 30
nqf3 = 30
/
28 cartesian
0.000000000 0.000000000 0.000000000 0.004629630
0.000000000 0.000000000 0.145933920 0.009259259
0.000000000 0.000000000 0.291867841 0.009259259
0.000000000 0.000000000 -0.437801761 0.004629630
0.000000000 0.192450090 0.000000000 0.027777778
0.000000000 0.192450090 0.145933920 0.055555556
0.000000000 0.192450090 0.291867841 0.055555556
0.000000000 0.192450090 -0.437801761 0.027777778
0.000000000 0.384900179 0.000000000 0.027777778
0.000000000 0.384900179 0.145933920 0.055555556
0.000000000 0.384900179 0.291867841 0.055555556
0.000000000 0.384900179 -0.437801761 0.027777778
0.000000000 -0.577350269 0.000000000 0.013888889
0.000000000 -0.577350269 0.145933920 0.027777778
0.000000000 -0.577350269 0.291867841 0.027777778
0.000000000 -0.577350269 -0.437801761 0.013888889
0.166666667 0.288675135 0.000000000 0.027777778
0.166666667 0.288675135 0.145933920 0.055555556
0.166666667 0.288675135 0.291867841 0.055555556
0.166666667 0.288675135 -0.437801761 0.027777778
0.166666667 0.481125224 0.000000000 0.055555556
0.166666667 0.481125224 0.145933920 0.111111111
0.166666667 0.481125224 0.291867841 0.111111111
0.166666667 0.481125224 -0.437801761 0.055555556
0.333333333 0.577350269 0.000000000 0.009259259
0.333333333 0.577350269 0.145933920 0.018518519
0.333333333 0.577350269 0.291867841 0.018518519
0.333333333 0.577350269 -0.437801761 0.009259259
Best wishes
Bruce Mu