error in routine broyden(6): factorization
Posted: Tue Sep 04, 2018 3:27 am
Dear all,
I'm a new learner to EPW. When I try to do epw.x calculations, I met an error in the step of solving isotropic Eliashberg equations on imaginary-axis. I have 2 questions:
1. How to fix the error ' error in routine broyden(6): factorization' ?
2. Why the estimated Allen-Dynes Tc is so large ? What should I do to get the correct value?
Here are the input and output.
input:
output:
Thanks and regards,
Xiaohan
I'm a new learner to EPW. When I try to do epw.x calculations, I met an error in the step of solving isotropic Eliashberg equations on imaginary-axis. I have 2 questions:
1. How to fix the error ' error in routine broyden(6): factorization' ?
2. Why the estimated Allen-Dynes Tc is so large ? What should I do to get the correct value?
Here are the input and output.
input:
Code: Select all
--
&inputepw
prefix = 'h3s',
amass(1) = 1.008,
amass(2) = 32.06
outdir = './'
ep_coupling = .true.
elph = .true.
kmaps = .false.
epbwrite = .true.
epbread = .false.
epwwrite = .true.
epwread = .false.
etf_mem = 1
nbndsub = 9
nbndskip = 0
wannierize = .true.
num_iter = 10000
dis_win_max = 33.0
dis_win_min = 0.0
proj(1)='random'
!proj(2) = 'S:p'
proj(2) = 'H:s'
iverbosity = 2
parallel_k = .true.
parallel_q = .false.
eps_acustic = 1.0
ephwrite = .true.
fsthick = 0.4
eptemp = 300
degaussw = 0.10
degaussq = 0.5
nqstep = 500
eliashberg = .true.
liso = .true.
limag = .true.
lpade = .true.
lacon = .true.
conv_thr_iaxis = 1.0d-2
conv_thr_racon = 1.0d-2
wscut = 0.5
nstemp = 3
tempsmin = 190.00
tempsmax = 240.00
nsiter = 500
muc = 0.16
dvscf_dir = './save'
nk1 = 6
nk2 = 6
nk3 = 6
nq1 = 2
nq2 = 2
nq3 = 2
mp_mesh_k = .true.
nkf1 = 12
nkf2 = 12
nkf3 = 12
nqf1 = 12
nqf2 = 12
nqf3 = 12
/
4 cartesian
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 -0.500000000
0.000000000 -0.500000000 -0.500000000
-0.500000000 -0.500000000 -0.500000000
output:
Code: Select all
......
......
===================================================================
Solve isotropic Eliashberg equations
===================================================================
Finish reading .freq file
Fermi level (eV) = 3.0765347476E+01
DOS(states/spin/eV/Unit Cell) = 1.4401140222E-02
Electron smearing (eV) = 1.0000000000E-01
Fermi window (eV) = 4.0000000000E-01
Nr irreducible k-points within the Fermi shell = 7 out of 84
2 bands within the Fermi window
Finish reading .egnv file
Max nr of q-points = 34
Finish reading .ikmap files
Start reading .ephmat files
Finish reading .ephmat files
lambda_max = 0.0450411 lambda_k_max = 0.0349339
Electron-phonon coupling strength = 0.0153917
Estimated Allen-Dynes Tc = 1304136.7081148 K for muc = 0.16000
Estimated BCS superconducting gap = 197.7921979 eV
temp( 1) = 190.00000 K
Solve isotropic Eliashberg equations on imaginary-axis
Total number of frequency points nsiw ( 1 ) = 5
iter = 1 error = 2.4687234455E+03 Znormi(1) = 1.0000096887E+00 Deltai(1) = -7.9926272214E-02
iter = 2 error = 3.1032568548E-05 Znormi(1) = 1.0000323260E+00 Deltai(1) = -7.9923543453E-02
Convergence was reached in nsiter = 2
iaxis_imag : 0.00s CPU 0.00s WALL ( 1 calls)
Pade approximant of isotropic Eliashberg equations from imaginary-axis to real-axis
pade = 4 error = 9.6971175492E-04 Re[Znorm(1)] = 1.0000324395E+00 Re[Delta(1)] = -7.9917933118E-02
raxis_pade : 0.00s CPU 0.06s WALL ( 1 calls)
Analytic continuation of isotropic Eliashberg equations from imaginary-axis to real-axis
Total number of frequency points nsw = 1000
iter = 1 error = 3.5303127519E+00 Re[Znorm(1)] = 1.0095012619E+00 Re[Delta(1)] = 3.0934545775E-02
iter = 2 error = 4.4514422372E-02 Re[Znorm(1)] = 1.0107920397E+00 Re[Delta(1)] = 3.1000378597E-02
iter = 3 error = 2.3226943841E-02 Re[Znorm(1)] = 1.0094155556E+00 Re[Delta(1)] = 3.1121693953E-02
iter = 4 error = 1.4163699664E-03 Re[Znorm(1)] = 1.0094607209E+00 Re[Delta(1)] = 3.1118151292E-02
Convergence was reached in nsiter = 4
raxis_acon : 0.46s CPU 0.50s WALL ( 1 calls)
itemp = 1 total cpu time : 0.6 secs
temp( 2) = 215.00000 K
Solve isotropic Eliashberg equations on imaginary-axis
Total number of frequency points nsiw ( 2 ) = 4
iter = 1 error = 3.6474898270E+00 Znormi(1) = 1.0104612381E+00 Deltai(1) = 2.9609774910E-02
iter = 2 error = 1.8145447398E+01 Znormi(1) = 1.0143183603E+00 Deltai(1) = 1.5311049912E-03
iter = 3 error = 1.1027266065E+01 Znormi(1) = 1.0143319963E+00 Deltai(1) = -1.5404809425E-04
iter = 4 error = 2.6237333860E+00 Znormi(1) = 1.0143320299E+00 Deltai(1) = 9.4249689740E-05
iter = 5 error = 2.6906797559E+01 Znormi(1) = 1.0143320754E+00 Deltai(1) = -3.6403709234E-06
iter = 6 error = 5.2143624565E+01 Znormi(1) = 1.0143320754E+00 Deltai(1) = 7.1038939502E-08
iter = 7 error = 7.2414067743E+00 Znormi(1) = 1.0143320754E+00 Deltai(1) = -1.1438373280E-08
iter = 8 error = 1.7121020893E+01 Znormi(1) = 1.0143320754E+00 Deltai(1) = 7.0686178910E-10
iter = 9 error = 5.5918259276E+01 Znormi(1) = 1.0143320754E+00 Deltai(1) = -1.2884922422E-11
iter = 10 error = 1.1674916477E+02 Znormi(1) = 1.0143320754E+00 Deltai(1) = 1.1042401721E-13
iter = 11 error = 3.2608593559E+02 Znormi(1) = 1.0143320754E+00 Deltai(1) = -4.1740120020E-16
iter = 12 error = 7.2644700849E+03 Znormi(1) = 1.0143320754E+00 Deltai(1) = 5.4313404221E-20
iter = 13 error = 9.4758877708E+00 Znormi(1) = 1.0143320754E+00 Deltai(1) = 5.6544495803E-21
iter = 14 error = 3.1271261124E+03 Znormi(1) = 1.0143320754E+00 Deltai(1) = 1.5729283948E-24
iter = 15 error = 1.5790915528E+03 Znormi(1) = 1.0143320754E+00 Deltai(1) = -1.4355529987E-27
iter = 16 error = 4.6182498842E+03 Znormi(1) = 1.0143320754E+00 Deltai(1) = -2.7129426882E-31
iter = 17 error = 2.2621787534E+04 Znormi(1) = 1.0143320754E+00 Deltai(1) = -1.1850080281E-35
iter = 18 error = 3.7699754882E+04 Znormi(1) = 1.0143320754E+00 Deltai(1) = -3.1010668206E-40
iter = 19 error = 7.6081446085E+04 Znormi(1) = 1.0143320754E+00 Deltai(1) = -4.3192551601E-45
iter = 20 error = 2.5811095566E+02 Znormi(1) = 1.0143320754E+00 Deltai(1) = -1.3195073361E-47
iter = 21 error = 1.1064835446E+02 Znormi(1) = 1.0143320754E+00 Deltai(1) = 1.2010977025E-49
iter = 22 error = 2.8294154637E+03 Znormi(1) = 1.0143320754E+00 Deltai(1) = -4.2471506223E-53
iter = 23 error = 5.0995761014E+03 Znormi(1) = 1.0143320754E+00 Deltai(1) = 8.3233123787E-57
iter = 24 error = 4.0748297992E+02 Znormi(1) = 1.0143320754E+00 Deltai(1) = 2.0294251698E-59
iter = 25 error = 2.3054296097E+02 Znormi(1) = 1.0143320754E+00 Deltai(1) = 8.7729024036E-62
iter = 26 error = 1.5360597909E+04 Znormi(1) = 1.0143320754E+00 Deltai(1) = 5.6867203476E-66
iter = 27 error = 4.0984645680E+03 Znormi(1) = 1.0143320754E+00 Deltai(1) = 1.3266819502E-69
iter = 28 error = 9.0543008089E+02 Znormi(1) = 1.0143320754E+00 Deltai(1) = -1.7051109766E-72
iter = 29 error = 1.0694719641E+02 Znormi(1) = 1.0143320754E+00 Deltai(1) = -1.4520313479E-74
iter = 30 error = 3.6912791082E+02 Znormi(1) = 1.0143320754E+00 Deltai(1) = -3.9212172986E-77
iter = 31 error = 9.0500315665E+02 Znormi(1) = 1.0143320754E+00 Deltai(1) = -4.3289705471E-80
iter = 32 error = 1.7397491957E+03 Znormi(1) = 1.0143320754E+00 Deltai(1) = -2.4887526622E-83
iter = 33 error = 3.3143472843E+03 Znormi(1) = 1.0143320754E+00 Deltai(1) = -7.5200225422E-87
iter = 34 error = 1.4183729964E+03 Znormi(1) = 1.0143320754E+00 Deltai(1) = -5.2789037394E-90
iter = 35 error = 2.2066633003E+03 Znormi(1) = 1.0143320754E+00 Deltai(1) = 2.3832886622E-93
iter = 36 error = 6.8285808331E+02 Znormi(1) = 1.0143320754E+00 Deltai(1) = -3.5043862381E-96
iter = 37 error = 5.5213745986E+02 Znormi(1) = 1.0143320754E+00 Deltai(1) = 6.3182051807E-99
iter = 38 error = 1.7660910107E+02 Znormi(1) = 1.0143320754E+00 Deltai(1) = 3.4704250772-101
iter = 39 error = 2.3623341737E+02 Znormi(1) = 1.0143320754E+00 Deltai(1) = -8.5142226839-104
iter = 40 error = 7.5477225197E+00 Znormi(1) = 1.0143320754E+00 Deltai(1) = -2.0277536460-104
iter = 41 error = 3.1199926982E+03 Znormi(1) = 1.0143320754E+00 Deltai(1) = 6.3583812063-108
iter = 42 error = 1.4744014679E+03 Znormi(1) = 1.0143320754E+00 Deltai(1) = -4.3198221105-111
iter = 43 error = 3.1923011944E+03 Znormi(1) = 1.0143320754E+00 Deltai(1) = 1.3521215438-114
iter = 44 error = 2.0201245912E+03 Znormi(1) = 1.0143320754E+00 Deltai(1) = -6.7050212014-118
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Error in routine broyden (6):
factorization
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
stopping ...
Thanks and regards,
Xiaohan