Page 1 of 1

termination of epw

Posted: Tue Aug 21, 2018 6:13 pm
by anindya@iiita
Dear Experts,
Please tell me the reason behind it.How to resolve this.

``:oss/
`.+s+. .+ys--yh+ `./ss+.
-sh//yy+` +yy +yy -+h+-oyy
-yh- .oyy/.-sh. .syo-.:sy- /yh
`.-.` `yh+ -oyyyo. `/syys: oys `.`
`/+ssys+-` `sh+ ` oys` .:osyo`
-yh- ./syyooyo` .sys+/oyo--yh/
`yy+ .-:-. `-/+/:` -sh-
/yh. oys
``..---hho---------` .---------..` `.-----.` -hd+---.
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
-yh- ```````````````` ````````` `` `` oys
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`

S. Ponce, E. R. Margine, C. Verdi, and F. Giustino,
Comput. Phys. Commun. 209, 116 (2016)


Program EPW v.4.3.0 starts on 22Aug2018 at 3:58:33

This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote

Parallel version (MPI), running on 32 processors

MPI processes distributed on 1 nodes
K-points division: npool = 32

Reading data from directory:
./Graphene.save/

IMPORTANT: XC functional enforced from input :
Exchange-correlation = PZ ( 1 1 0 0 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want


G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 595 595 241 51303 51303 12669


Check: negative/imaginary core charge= -0.000013 0.000000

--

bravais-lattice index = 4
lattice parameter (a_0) = 4.6510 a.u.
unit-cell volume = 379.1141 (a.u.)^3
number of atoms/cell = 2
number of atomic types = 1
kinetic-energy cut-off = 100.0000 Ry
charge density cut-off = 400.0000 Ry
convergence threshold = 0.0E+00
beta = 0.0000
number of iterations used = 0
Exchange-correlation = PZ ( 1 1 0 0 0 0)


celldm(1)= 4.65099 celldm(2)= 0.00000 celldm(3)= 4.35113
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000

crystal axes: (cart. coord. in units of a_0)
a(1) = ( 1.0000 0.0000 0.0000 )
a(2) = ( -0.5000 0.8660 0.0000 )
a(3) = ( 0.0000 0.0000 4.3511 )

reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( 1.0000 0.5774 -0.0000 )
b(2) = ( 0.0000 1.1547 0.0000 )
b(3) = ( 0.0000 -0.0000 0.2298 )


Atoms inside the unit cell:

Cartesian axes

site n. atom mass positions (a_0 units)
1 C 12.0117 tau( 1) = ( 0.25000 -0.14434 2.17556 )
2 C 12.0117 tau( 2) = ( 0.75000 0.14434 2.17556 )

25 Sym.Ops. (with q -> -q+G )


G cutoff = 219.1754 ( 51303 G-vectors) FFT grid: ( 30, 30,135)
number of k points= 256 gaussian broad. (Ry)= 0.0020 ngauss = 0
cart. coord. in units 2pi/a_0
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0078125
k( 2) = ( 0.0000000 0.0721688 0.0000000), wk = 0.0078125
k( 3) = ( 0.0000000 0.1443376 0.0000000), wk = 0.0078125
k( 4) = ( 0.0000000 0.2165064 0.0000000), wk = 0.0078125
k( 5) = ( 0.0000000 0.2886751 0.0000000), wk = 0.0078125
k( 6) = ( 0.0000000 0.3608439 0.0000000), wk = 0.0078125
k( 7) = ( 0.0000000 0.4330127 0.0000000), wk = 0.0078125
k( 8) = ( 0.0000000 0.5051815 0.0000000), wk = 0.0078125
k( 9) = ( 0.0000000 0.5773503 0.0000000), wk = 0.0078125
k( 10) = ( 0.0000000 0.6495191 0.0000000), wk = 0.0078125
k( 11) = ( 0.0000000 0.7216878 0.0000000), wk = 0.0078125
k( 12) = ( 0.0000000 0.7938566 0.0000000), wk = 0.0078125
k( 13) = ( 0.0000000 0.8660254 0.0000000), wk = 0.0078125
k( 14) = ( 0.0000000 0.9381942 0.0000000), wk = 0.0078125
k( 15) = ( 0.0000000 1.0103630 0.0000000), wk = 0.0078125
k( 16) = ( 0.0000000 1.0825318 0.0000000), wk = 0.0078125
k( 17) = ( 0.0625000 0.0360844 0.0000000), wk = 0.0078125
k( 18) = ( 0.0625000 0.1082532 0.0000000), wk = 0.0078125
k( 19) = ( 0.0625000 0.1804220 0.0000000), wk = 0.0078125
k( 20) = ( 0.0625000 0.2525907 0.0000000), wk = 0.0078125
k( 21) = ( 0.0625000 0.3247595 0.0000000), wk = 0.0078125
k( 22) = ( 0.0625000 0.3969283 0.0000000), wk = 0.0078125
k( 23) = ( 0.0625000 0.4690971 0.0000000), wk = 0.0078125
k( 24) = ( 0.0625000 0.5412659 0.0000000), wk = 0.0078125
k( 25) = ( 0.0625000 0.6134347 0.0000000), wk = 0.0078125
k( 26) = ( 0.0625000 0.6856034 0.0000000), wk = 0.0078125
k( 27) = ( 0.0625000 0.7577722 0.0000000), wk = 0.0078125
k( 28) = ( 0.0625000 0.8299410 0.0000000), wk = 0.0078125
k( 29) = ( 0.0625000 0.9021098 0.0000000), wk = 0.0078125
k( 30) = ( 0.0625000 0.9742786 0.0000000), wk = 0.0078125
k( 31) = ( 0.0625000 1.0464474 0.0000000), wk = 0.0078125
k( 32) = ( 0.0625000 1.1186161 0.0000000), wk = 0.0078125
k( 33) = ( 0.1250000 0.0721688 0.0000000), wk = 0.0078125
k( 34) = ( 0.1250000 0.1443376 0.0000000), wk = 0.0078125
k( 35) = ( 0.1250000 0.2165064 0.0000000), wk = 0.0078125
k( 36) = ( 0.1250000 0.2886751 0.0000000), wk = 0.0078125
k( 37) = ( 0.1250000 0.3608439 0.0000000), wk = 0.0078125
k( 38) = ( 0.1250000 0.4330127 0.0000000), wk = 0.0078125
k( 39) = ( 0.1250000 0.5051815 0.0000000), wk = 0.0078125
k( 40) = ( 0.1250000 0.5773503 0.0000000), wk = 0.0078125
k( 41) = ( 0.1250000 0.6495191 0.0000000), wk = 0.0078125
k( 42) = ( 0.1250000 0.7216878 0.0000000), wk = 0.0078125
k( 43) = ( 0.1250000 0.7938566 0.0000000), wk = 0.0078125
k( 44) = ( 0.1250000 0.8660254 0.0000000), wk = 0.0078125
k( 45) = ( 0.1250000 0.9381942 0.0000000), wk = 0.0078125
k( 46) = ( 0.1250000 1.0103630 0.0000000), wk = 0.0078125
k( 47) = ( 0.1250000 1.0825318 0.0000000), wk = 0.0078125
k( 48) = ( 0.1250000 1.1547005 0.0000000), wk = 0.0078125
k( 49) = ( 0.1875000 0.1082532 0.0000000), wk = 0.0078125
k( 50) = ( 0.1875000 0.1804220 0.0000000), wk = 0.0078125
k( 51) = ( 0.1875000 0.2525907 0.0000000), wk = 0.0078125
k( 52) = ( 0.1875000 0.3247595 0.0000000), wk = 0.0078125
k( 53) = ( 0.1875000 0.3969283 0.0000000), wk = 0.0078125
k( 54) = ( 0.1875000 0.4690971 0.0000000), wk = 0.0078125
k( 55) = ( 0.1875000 0.5412659 0.0000000), wk = 0.0078125
k( 56) = ( 0.1875000 0.6134347 0.0000000), wk = 0.0078125
k( 57) = ( 0.1875000 0.6856034 0.0000000), wk = 0.0078125
k( 58) = ( 0.1875000 0.7577722 0.0000000), wk = 0.0078125
k( 59) = ( 0.1875000 0.8299410 0.0000000), wk = 0.0078125
k( 60) = ( 0.1875000 0.9021098 0.0000000), wk = 0.0078125
k( 61) = ( 0.1875000 0.9742786 0.0000000), wk = 0.0078125
k( 62) = ( 0.1875000 1.0464474 0.0000000), wk = 0.0078125
k( 63) = ( 0.1875000 1.1186161 0.0000000), wk = 0.0078125
k( 64) = ( 0.1875000 1.1907849 0.0000000), wk = 0.0078125
k( 65) = ( 0.2500000 0.1443376 0.0000000), wk = 0.0078125
k( 66) = ( 0.2500000 0.2165064 0.0000000), wk = 0.0078125
k( 67) = ( 0.2500000 0.2886751 0.0000000), wk = 0.0078125
k( 68) = ( 0.2500000 0.3608439 0.0000000), wk = 0.0078125
k( 69) = ( 0.2500000 0.4330127 0.0000000), wk = 0.0078125
k( 70) = ( 0.2500000 0.5051815 0.0000000), wk = 0.0078125
k( 71) = ( 0.2500000 0.5773503 0.0000000), wk = 0.0078125
k( 72) = ( 0.2500000 0.6495191 0.0000000), wk = 0.0078125
k( 73) = ( 0.2500000 0.7216878 0.0000000), wk = 0.0078125
k( 74) = ( 0.2500000 0.7938566 0.0000000), wk = 0.0078125
k( 75) = ( 0.2500000 0.8660254 0.0000000), wk = 0.0078125
k( 76) = ( 0.2500000 0.9381942 0.0000000), wk = 0.0078125
k( 77) = ( 0.2500000 1.0103630 0.0000000), wk = 0.0078125
k( 78) = ( 0.2500000 1.0825318 0.0000000), wk = 0.0078125
k( 79) = ( 0.2500000 1.1547005 0.0000000), wk = 0.0078125
k( 80) = ( 0.2500000 1.2268693 0.0000000), wk = 0.0078125
k( 81) = ( 0.3125000 0.1804220 0.0000000), wk = 0.0078125
k( 82) = ( 0.3125000 0.2525907 0.0000000), wk = 0.0078125
k( 83) = ( 0.3125000 0.3247595 0.0000000), wk = 0.0078125
k( 84) = ( 0.3125000 0.3969283 0.0000000), wk = 0.0078125
k( 85) = ( 0.3125000 0.4690971 0.0000000), wk = 0.0078125
k( 86) = ( 0.3125000 0.5412659 0.0000000), wk = 0.0078125
k( 87) = ( 0.3125000 0.6134347 0.0000000), wk = 0.0078125
k( 88) = ( 0.3125000 0.6856034 0.0000000), wk = 0.0078125
k( 89) = ( 0.3125000 0.7577722 0.0000000), wk = 0.0078125
k( 90) = ( 0.3125000 0.8299410 0.0000000), wk = 0.0078125
k( 91) = ( 0.3125000 0.9021098 0.0000000), wk = 0.0078125
k( 92) = ( 0.3125000 0.9742786 0.0000000), wk = 0.0078125
k( 93) = ( 0.3125000 1.0464474 0.0000000), wk = 0.0078125
k( 94) = ( 0.3125000 1.1186161 0.0000000), wk = 0.0078125
k( 95) = ( 0.3125000 1.1907849 0.0000000), wk = 0.0078125
k( 96) = ( 0.3125000 1.2629537 0.0000000), wk = 0.0078125
k( 97) = ( 0.3750000 0.2165064 0.0000000), wk = 0.0078125
k( 98) = ( 0.3750000 0.2886751 0.0000000), wk = 0.0078125
k( 99) = ( 0.3750000 0.3608439 0.0000000), wk = 0.0078125
k( 100) = ( 0.3750000 0.4330127 0.0000000), wk = 0.0078125
k( 101) = ( 0.3750000 0.5051815 0.0000000), wk = 0.0078125
k( 102) = ( 0.3750000 0.5773503 0.0000000), wk = 0.0078125
k( 103) = ( 0.3750000 0.6495191 0.0000000), wk = 0.0078125
k( 104) = ( 0.3750000 0.7216878 0.0000000), wk = 0.0078125
k( 105) = ( 0.3750000 0.7938566 0.0000000), wk = 0.0078125
k( 106) = ( 0.3750000 0.8660254 0.0000000), wk = 0.0078125
k( 107) = ( 0.3750000 0.9381942 0.0000000), wk = 0.0078125
k( 108) = ( 0.3750000 1.0103630 0.0000000), wk = 0.0078125
k( 109) = ( 0.3750000 1.0825318 0.0000000), wk = 0.0078125
k( 110) = ( 0.3750000 1.1547005 0.0000000), wk = 0.0078125
k( 111) = ( 0.3750000 1.2268693 0.0000000), wk = 0.0078125
k( 112) = ( 0.3750000 1.2990381 0.0000000), wk = 0.0078125
k( 113) = ( 0.4375000 0.2525907 0.0000000), wk = 0.0078125
k( 114) = ( 0.4375000 0.3247595 0.0000000), wk = 0.0078125
k( 115) = ( 0.4375000 0.3969283 0.0000000), wk = 0.0078125
k( 116) = ( 0.4375000 0.4690971 0.0000000), wk = 0.0078125
k( 117) = ( 0.4375000 0.5412659 0.0000000), wk = 0.0078125
k( 118) = ( 0.4375000 0.6134347 0.0000000), wk = 0.0078125
k( 119) = ( 0.4375000 0.6856034 0.0000000), wk = 0.0078125
k( 120) = ( 0.4375000 0.7577722 0.0000000), wk = 0.0078125
k( 121) = ( 0.4375000 0.8299410 0.0000000), wk = 0.0078125
k( 122) = ( 0.4375000 0.9021098 0.0000000), wk = 0.0078125
k( 123) = ( 0.4375000 0.9742786 0.0000000), wk = 0.0078125
k( 124) = ( 0.4375000 1.0464474 0.0000000), wk = 0.0078125
k( 125) = ( 0.4375000 1.1186161 0.0000000), wk = 0.0078125
k( 126) = ( 0.4375000 1.1907849 0.0000000), wk = 0.0078125
k( 127) = ( 0.4375000 1.2629537 0.0000000), wk = 0.0078125
k( 128) = ( 0.4375000 1.3351225 0.0000000), wk = 0.0078125
k( 129) = ( 0.5000000 0.2886751 0.0000000), wk = 0.0078125
k( 130) = ( 0.5000000 0.3608439 0.0000000), wk = 0.0078125
k( 131) = ( 0.5000000 0.4330127 0.0000000), wk = 0.0078125
k( 132) = ( 0.5000000 0.5051815 0.0000000), wk = 0.0078125
k( 133) = ( 0.5000000 0.5773503 0.0000000), wk = 0.0078125
k( 134) = ( 0.5000000 0.6495191 0.0000000), wk = 0.0078125
k( 135) = ( 0.5000000 0.7216878 0.0000000), wk = 0.0078125
k( 136) = ( 0.5000000 0.7938566 0.0000000), wk = 0.0078125
k( 137) = ( 0.5000000 0.8660254 0.0000000), wk = 0.0078125
k( 138) = ( 0.5000000 0.9381942 0.0000000), wk = 0.0078125
k( 139) = ( 0.5000000 1.0103630 0.0000000), wk = 0.0078125
k( 140) = ( 0.5000000 1.0825318 0.0000000), wk = 0.0078125
k( 141) = ( 0.5000000 1.1547005 0.0000000), wk = 0.0078125
k( 142) = ( 0.5000000 1.2268693 0.0000000), wk = 0.0078125
k( 143) = ( 0.5000000 1.2990381 0.0000000), wk = 0.0078125
k( 144) = ( 0.5000000 1.3712069 0.0000000), wk = 0.0078125
k( 145) = ( 0.5625000 0.3247595 0.0000000), wk = 0.0078125
k( 146) = ( 0.5625000 0.3969283 0.0000000), wk = 0.0078125
k( 147) = ( 0.5625000 0.4690971 0.0000000), wk = 0.0078125
k( 148) = ( 0.5625000 0.5412659 0.0000000), wk = 0.0078125
k( 149) = ( 0.5625000 0.6134347 0.0000000), wk = 0.0078125
k( 150) = ( 0.5625000 0.6856034 0.0000000), wk = 0.0078125
k( 151) = ( 0.5625000 0.7577722 0.0000000), wk = 0.0078125
k( 152) = ( 0.5625000 0.8299410 0.0000000), wk = 0.0078125
k( 153) = ( 0.5625000 0.9021098 0.0000000), wk = 0.0078125
k( 154) = ( 0.5625000 0.9742786 0.0000000), wk = 0.0078125
k( 155) = ( 0.5625000 1.0464474 0.0000000), wk = 0.0078125
k( 156) = ( 0.5625000 1.1186161 0.0000000), wk = 0.0078125
k( 157) = ( 0.5625000 1.1907849 0.0000000), wk = 0.0078125
k( 158) = ( 0.5625000 1.2629537 0.0000000), wk = 0.0078125
k( 159) = ( 0.5625000 1.3351225 0.0000000), wk = 0.0078125
k( 160) = ( 0.5625000 1.4072913 0.0000000), wk = 0.0078125
k( 161) = ( 0.6250000 0.3608439 0.0000000), wk = 0.0078125
k( 162) = ( 0.6250000 0.4330127 0.0000000), wk = 0.0078125
k( 163) = ( 0.6250000 0.5051815 0.0000000), wk = 0.0078125
k( 164) = ( 0.6250000 0.5773503 0.0000000), wk = 0.0078125
k( 165) = ( 0.6250000 0.6495191 0.0000000), wk = 0.0078125
k( 166) = ( 0.6250000 0.7216878 0.0000000), wk = 0.0078125
k( 167) = ( 0.6250000 0.7938566 0.0000000), wk = 0.0078125
k( 168) = ( 0.6250000 0.8660254 0.0000000), wk = 0.0078125
k( 169) = ( 0.6250000 0.9381942 0.0000000), wk = 0.0078125
k( 170) = ( 0.6250000 1.0103630 0.0000000), wk = 0.0078125
k( 171) = ( 0.6250000 1.0825318 0.0000000), wk = 0.0078125
k( 172) = ( 0.6250000 1.1547005 0.0000000), wk = 0.0078125
k( 173) = ( 0.6250000 1.2268693 0.0000000), wk = 0.0078125
k( 174) = ( 0.6250000 1.2990381 0.0000000), wk = 0.0078125
k( 175) = ( 0.6250000 1.3712069 0.0000000), wk = 0.0078125
k( 176) = ( 0.6250000 1.4433757 0.0000000), wk = 0.0078125
k( 177) = ( 0.6875000 0.3969283 0.0000000), wk = 0.0078125
k( 178) = ( 0.6875000 0.4690971 0.0000000), wk = 0.0078125
k( 179) = ( 0.6875000 0.5412659 0.0000000), wk = 0.0078125
k( 180) = ( 0.6875000 0.6134347 0.0000000), wk = 0.0078125
k( 181) = ( 0.6875000 0.6856034 0.0000000), wk = 0.0078125
k( 182) = ( 0.6875000 0.7577722 0.0000000), wk = 0.0078125
k( 183) = ( 0.6875000 0.8299410 0.0000000), wk = 0.0078125
k( 184) = ( 0.6875000 0.9021098 0.0000000), wk = 0.0078125
k( 185) = ( 0.6875000 0.9742786 0.0000000), wk = 0.0078125
k( 186) = ( 0.6875000 1.0464474 0.0000000), wk = 0.0078125
k( 187) = ( 0.6875000 1.1186161 0.0000000), wk = 0.0078125
k( 188) = ( 0.6875000 1.1907849 0.0000000), wk = 0.0078125
k( 189) = ( 0.6875000 1.2629537 0.0000000), wk = 0.0078125
k( 190) = ( 0.6875000 1.3351225 0.0000000), wk = 0.0078125
k( 191) = ( 0.6875000 1.4072913 0.0000000), wk = 0.0078125
k( 192) = ( 0.6875000 1.4794601 0.0000000), wk = 0.0078125
k( 193) = ( 0.7500000 0.4330127 0.0000000), wk = 0.0078125
k( 194) = ( 0.7500000 0.5051815 0.0000000), wk = 0.0078125
k( 195) = ( 0.7500000 0.5773503 0.0000000), wk = 0.0078125
k( 196) = ( 0.7500000 0.6495191 0.0000000), wk = 0.0078125
k( 197) = ( 0.7500000 0.7216878 0.0000000), wk = 0.0078125
k( 198) = ( 0.7500000 0.7938566 0.0000000), wk = 0.0078125
k( 199) = ( 0.7500000 0.8660254 0.0000000), wk = 0.0078125
k( 200) = ( 0.7500000 0.9381942 0.0000000), wk = 0.0078125
k( 201) = ( 0.7500000 1.0103630 0.0000000), wk = 0.0078125
k( 202) = ( 0.7500000 1.0825318 0.0000000), wk = 0.0078125
k( 203) = ( 0.7500000 1.1547005 0.0000000), wk = 0.0078125
k( 204) = ( 0.7500000 1.2268693 0.0000000), wk = 0.0078125
k( 205) = ( 0.7500000 1.2990381 0.0000000), wk = 0.0078125
k( 206) = ( 0.7500000 1.3712069 0.0000000), wk = 0.0078125
k( 207) = ( 0.7500000 1.4433757 0.0000000), wk = 0.0078125
k( 208) = ( 0.7500000 1.5155445 0.0000000), wk = 0.0078125
k( 209) = ( 0.8125000 0.4690971 0.0000000), wk = 0.0078125
k( 210) = ( 0.8125000 0.5412659 0.0000000), wk = 0.0078125
k( 211) = ( 0.8125000 0.6134347 0.0000000), wk = 0.0078125
k( 212) = ( 0.8125000 0.6856034 0.0000000), wk = 0.0078125
k( 213) = ( 0.8125000 0.7577722 0.0000000), wk = 0.0078125
k( 214) = ( 0.8125000 0.8299410 0.0000000), wk = 0.0078125
k( 215) = ( 0.8125000 0.9021098 0.0000000), wk = 0.0078125
k( 216) = ( 0.8125000 0.9742786 0.0000000), wk = 0.0078125
k( 217) = ( 0.8125000 1.0464474 0.0000000), wk = 0.0078125
k( 218) = ( 0.8125000 1.1186161 0.0000000), wk = 0.0078125
k( 219) = ( 0.8125000 1.1907849 0.0000000), wk = 0.0078125
k( 220) = ( 0.8125000 1.2629537 0.0000000), wk = 0.0078125
k( 221) = ( 0.8125000 1.3351225 0.0000000), wk = 0.0078125
k( 222) = ( 0.8125000 1.4072913 0.0000000), wk = 0.0078125
k( 223) = ( 0.8125000 1.4794601 0.0000000), wk = 0.0078125
k( 224) = ( 0.8125000 1.5516288 0.0000000), wk = 0.0078125
k( 225) = ( 0.8750000 0.5051815 0.0000000), wk = 0.0078125
k( 226) = ( 0.8750000 0.5773503 0.0000000), wk = 0.0078125
k( 227) = ( 0.8750000 0.6495191 0.0000000), wk = 0.0078125
k( 228) = ( 0.8750000 0.7216878 0.0000000), wk = 0.0078125
k( 229) = ( 0.8750000 0.7938566 0.0000000), wk = 0.0078125
k( 230) = ( 0.8750000 0.8660254 0.0000000), wk = 0.0078125
k( 231) = ( 0.8750000 0.9381942 0.0000000), wk = 0.0078125
k( 232) = ( 0.8750000 1.0103630 0.0000000), wk = 0.0078125
k( 233) = ( 0.8750000 1.0825318 0.0000000), wk = 0.0078125
k( 234) = ( 0.8750000 1.1547005 0.0000000), wk = 0.0078125
k( 235) = ( 0.8750000 1.2268693 0.0000000), wk = 0.0078125
k( 236) = ( 0.8750000 1.2990381 0.0000000), wk = 0.0078125
k( 237) = ( 0.8750000 1.3712069 0.0000000), wk = 0.0078125
k( 238) = ( 0.8750000 1.4433757 0.0000000), wk = 0.0078125
k( 239) = ( 0.8750000 1.5155445 0.0000000), wk = 0.0078125
k( 240) = ( 0.8750000 1.5877132 0.0000000), wk = 0.0078125
k( 241) = ( 0.9375000 0.5412659 0.0000000), wk = 0.0078125
k( 242) = ( 0.9375000 0.6134347 0.0000000), wk = 0.0078125
k( 243) = ( 0.9375000 0.6856034 0.0000000), wk = 0.0078125
k( 244) = ( 0.9375000 0.7577722 0.0000000), wk = 0.0078125
k( 245) = ( 0.9375000 0.8299410 0.0000000), wk = 0.0078125
k( 246) = ( 0.9375000 0.9021098 0.0000000), wk = 0.0078125
k( 247) = ( 0.9375000 0.9742786 0.0000000), wk = 0.0078125
k( 248) = ( 0.9375000 1.0464474 0.0000000), wk = 0.0078125
k( 249) = ( 0.9375000 1.1186161 0.0000000), wk = 0.0078125
k( 250) = ( 0.9375000 1.1907849 0.0000000), wk = 0.0078125
k( 251) = ( 0.9375000 1.2629537 0.0000000), wk = 0.0078125
k( 252) = ( 0.9375000 1.3351225 0.0000000), wk = 0.0078125
k( 253) = ( 0.9375000 1.4072913 0.0000000), wk = 0.0078125
k( 254) = ( 0.9375000 1.4794601 0.0000000), wk = 0.0078125
k( 255) = ( 0.9375000 1.5516288 0.0000000), wk = 0.0078125
k( 256) = ( 0.9375000 1.6237976 0.0000000), wk = 0.0078125

PseudoPot. # 1 for C read from file:
/home/anindya/espresso/pseudo/C_PZ_r.oncvpsp.upf
MD5 check sum: 8244e5e5a9dbe7466d722c8d0ea51c4b
Pseudo is Norm-conserving + core correction, Zval = 4.0
Generated using ONCVPSP code by D. R. Hamann
Using radial grid of 1234 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
EPW : 0.82s CPU 4.60s WALL

EPW : 1.57s CPU 5.45s WALL

No wavefunction gauge setting applied
-------------------------------------------------------------------
Wannierization on 16 x 16 x 1 electronic grid
-------------------------------------------------------------------

Spin CASE ( default = unpolarized )

Initializing Wannier90


Initial Wannier projections

( 0.16667 -0.16667 0.50000) : l = 1 mr = 1
( 0.83333 0.16667 0.50000) : l = 1 mr = 1
( 0.16700 0.33300 0.00000) : l = 0 mr = 1
( -0.33300 -0.16700 0.00000) : l = 0 mr = 1
( 0.16700 -0.16700 0.00000) : l = 0 mr = 1

- Number of bands is ( 16)
- Number of wannier functions is ( 5)
- All guiding functions are given

Reading data about k-point neighbours

- All neighbours are found

AMN
k points = 256 in 32 pools
1 of 8 on ionode
2 of 8 on ionode
3 of 8 on ionode
4 of 8 on ionode
5 of 8 on ionode
6 of 8 on ionode
7 of 8 on ionode
8 of 8 on ionode

AMN calculated

MMN
k points = 256 in 32 pools
1 of 8 on ionode
2 of 8 on ionode
3 of 8 on ionode
4 of 8 on ionode
5 of 8 on ionode
6 of 8 on ionode
7 of 8 on ionode
8 of 8 on ionode
MMN calculated

Running Wannier90

Wannier Function centers (cartesian, alat) and spreads (ang):

( 0.25000 -0.14434 2.17556) : 0.87522
( 0.75000 0.14434 2.17556) : 0.87522
( 0.00000 0.00000 -2.17556) : 0.60699
( 0.25000 -0.43301 2.17556) : 0.60699
( 0.50000 -0.00000 -2.17556) : 0.60699

-------------------------------------------------------------------
WANNIER : 47.61s CPU 284.01s WALL ( 1 calls)
-------------------------------------------------------------------

Dipole matrix elements calculated


Calculating kmap and kgmap
Progress kmap: ########################################
Progress kgmap: ########################################
kmaps : 87.60s CPU 88.88s WALL ( 1 calls)
Symmetries of bravais lattice: 24
Symmetries of crystal: 24


===================================================================
irreducible q point # 1
===================================================================

Symmetries of small group of q: 24
in addition sym. q -> -q+G:

Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 0.000000000
Imposing acoustic sum rule on the dynamical matrix

q( 1 ) = ( 0.0000000 0.0000000 0.0000000 )


===================================================================
irreducible q point # 2
===================================================================

Symmetries of small group of q: 4

Number of q in the star = 6
List of q in the star:
1 0.000000000 0.144337567 0.000000000
2 0.000000000 -0.144337567 0.000000000
3 0.125000000 0.072168783 0.000000000
4 -0.125000000 -0.072168783 0.000000000
5 0.125000000 -0.072168783 0.000000000
6 -0.125000000 0.072168783 0.000000000

q( 2 ) = ( 0.0000000 0.1443376 0.0000000 )
q( 3 ) = ( 0.0000000 -0.1443376 0.0000000 )
q( 4 ) = ( 0.1250000 0.0721688 0.0000000 )
q( 5 ) = ( -0.1250000 -0.0721688 0.0000000 )
q( 6 ) = ( 0.1250000 -0.0721688 0.0000000 )
q( 7 ) = ( -0.1250000 0.0721688 0.0000000 )


===================================================================
irreducible q point # 3
===================================================================

Symmetries of small group of q: 4

Number of q in the star = 6
List of q in the star:
1 0.000000000 0.288675135 0.000000000
2 0.000000000 -0.288675135 0.000000000
3 0.250000000 0.144337568 0.000000000
4 -0.250000000 -0.144337568 0.000000000
5 0.250000000 -0.144337568 0.000000000
6 -0.250000000 0.144337568 0.000000000

q( 8 ) = ( 0.0000000 0.2886751 0.0000000 )
q( 9 ) = ( 0.0000000 -0.2886751 0.0000000 )
q( 10 ) = ( 0.2500000 0.1443376 0.0000000 )
q( 11 ) = ( -0.2500000 -0.1443376 0.0000000 )
q( 12 ) = ( 0.2500000 -0.1443376 0.0000000 )
q( 13 ) = ( -0.2500000 0.1443376 0.0000000 )


===================================================================
irreducible q point # 4
===================================================================

Symmetries of small group of q: 4

Number of q in the star = 6
List of q in the star:
1 0.000000000 0.433012702 0.000000000
2 0.000000000 -0.433012702 0.000000000
3 0.375000000 0.216506351 0.000000000
4 -0.375000000 -0.216506351 0.000000000
5 0.375000000 -0.216506351 0.000000000
6 -0.375000000 0.216506351 0.000000000

q( 14 ) = ( 0.0000000 0.4330127 0.0000000 )
q( 15 ) = ( 0.0000000 -0.4330127 0.0000000 )
q( 16 ) = ( 0.3750000 0.2165064 0.0000000 )
q( 17 ) = ( -0.3750000 -0.2165064 0.0000000 )
q( 18 ) = ( 0.3750000 -0.2165064 0.0000000 )
q( 19 ) = ( -0.3750000 0.2165064 0.0000000 )


===================================================================
irreducible q point # 5
===================================================================

Symmetries of small group of q: 8
in addition sym. q -> -q+G:

Number of q in the star = 3
List of q in the star:
1 0.000000000 -0.577350269 0.000000000
2 0.500000000 0.288675134 0.000000000
3 -0.500000000 0.288675134 0.000000000

q( 20 ) = ( 0.0000000 -0.5773503 0.0000000 )
q( 21 ) = ( 0.5000000 0.2886751 0.0000000 )
q( 22 ) = ( -0.5000000 0.2886751 0.0000000 )


===================================================================
irreducible q point # 6
===================================================================

Symmetries of small group of q: 4

Number of q in the star = 6
List of q in the star:
1 0.125000000 0.216506351 0.000000000
2 -0.125000000 -0.216506351 0.000000000
3 0.125000000 -0.216506351 0.000000000
4 0.250000000 -0.000000000 0.000000000
5 -0.250000000 0.000000000 0.000000000
6 -0.125000000 0.216506351 0.000000000

q( 23 ) = ( 0.1250000 0.2165064 0.0000000 )
q( 24 ) = ( -0.1250000 -0.2165064 0.0000000 )
q( 25 ) = ( 0.1250000 -0.2165064 0.0000000 )
q( 26 ) = ( 0.2500000 -0.0000000 0.0000000 )
q( 27 ) = ( -0.2500000 0.0000000 0.0000000 )
q( 28 ) = ( -0.1250000 0.2165064 0.0000000 )


===================================================================
irreducible q point # 7
===================================================================

Symmetries of small group of q: 2

Number of q in the star = 12
List of q in the star:
1 0.125000000 0.360843918 0.000000000
2 0.250000000 0.288675134 0.000000000
3 -0.125000000 -0.360843918 0.000000000
4 0.125000000 -0.360843918 0.000000000
5 -0.250000000 -0.288675134 0.000000000
6 0.375000000 -0.072168784 0.000000000
7 -0.375000000 0.072168784 0.000000000
8 -0.125000000 0.360843918 0.000000000
9 -0.250000000 0.288675134 0.000000000
10 0.375000000 0.072168784 0.000000000
11 -0.375000000 -0.072168784 0.000000000
12 0.250000000 -0.288675134 0.000000000

q( 29 ) = ( 0.1250000 0.3608439 0.0000000 )
q( 30 ) = ( 0.2500000 0.2886751 0.0000000 )
q( 31 ) = ( -0.1250000 -0.3608439 0.0000000 )
q( 32 ) = ( 0.1250000 -0.3608439 0.0000000 )
q( 33 ) = ( -0.2500000 -0.2886751 0.0000000 )
q( 34 ) = ( 0.3750000 -0.0721688 0.0000000 )
q( 35 ) = ( -0.3750000 0.0721688 0.0000000 )
q( 36 ) = ( -0.1250000 0.3608439 0.0000000 )
q( 37 ) = ( -0.2500000 0.2886751 0.0000000 )
q( 38 ) = ( 0.3750000 0.0721688 0.0000000 )
q( 39 ) = ( -0.3750000 -0.0721688 0.0000000 )
q( 40 ) = ( 0.2500000 -0.2886751 0.0000000 )


===================================================================
irreducible q point # 8
===================================================================

Symmetries of small group of q: 2

Number of q in the star = 12
List of q in the star:
1 0.125000000 0.505181486 0.000000000
2 0.375000000 0.360843918 0.000000000
3 -0.125000000 -0.505181486 0.000000000
4 0.125000000 -0.505181486 0.000000000
5 -0.375000000 -0.360843918 0.000000000
6 0.500000000 -0.144337568 0.000000000
7 -0.500000000 0.144337568 0.000000000
8 -0.125000000 0.505181486 0.000000000
9 -0.375000000 0.360843918 0.000000000
10 0.500000000 0.144337568 0.000000000
11 -0.500000000 -0.144337568 0.000000000
12 0.375000000 -0.360843918 0.000000000

q( 41 ) = ( 0.1250000 0.5051815 0.0000000 )
q( 42 ) = ( 0.3750000 0.3608439 0.0000000 )
q( 43 ) = ( -0.1250000 -0.5051815 0.0000000 )
q( 44 ) = ( 0.1250000 -0.5051815 0.0000000 )
q( 45 ) = ( -0.3750000 -0.3608439 0.0000000 )
q( 46 ) = ( 0.5000000 -0.1443376 0.0000000 )
q( 47 ) = ( -0.5000000 0.1443376 0.0000000 )
q( 48 ) = ( -0.1250000 0.5051815 0.0000000 )
q( 49 ) = ( -0.3750000 0.3608439 0.0000000 )
q( 50 ) = ( 0.5000000 0.1443376 0.0000000 )
q( 51 ) = ( -0.5000000 -0.1443376 0.0000000 )
q( 52 ) = ( 0.3750000 -0.3608439 0.0000000 )


===================================================================
irreducible q point # 9
===================================================================

Symmetries of small group of q: 4

Number of q in the star = 6
List of q in the star:
1 0.250000000 0.433012702 0.000000000
2 -0.250000000 -0.433012702 0.000000000
3 0.250000000 -0.433012702 0.000000000
4 0.500000000 -0.000000000 0.000000000
5 -0.500000000 0.000000000 0.000000000
6 -0.250000000 0.433012702 0.000000000

q( 53 ) = ( 0.2500000 0.4330127 0.0000000 )
q( 54 ) = ( -0.2500000 -0.4330127 0.0000000 )
q( 55 ) = ( 0.2500000 -0.4330127 0.0000000 )
q( 56 ) = ( 0.5000000 -0.0000000 0.0000000 )
q( 57 ) = ( -0.5000000 0.0000000 0.0000000 )
q( 58 ) = ( -0.2500000 0.4330127 0.0000000 )


===================================================================
irreducible q point # 10
===================================================================

Symmetries of small group of q: 4

Number of q in the star = 6
List of q in the star:
1 0.250000000 0.577350269 0.000000000
2 -0.250000000 -0.577350269 0.000000000
3 0.375000000 0.505181485 0.000000000
4 -0.375000000 -0.505181485 0.000000000
5 0.625000000 -0.072168784 0.000000000
6 -0.625000000 0.072168784 0.000000000

q( 59 ) = ( 0.2500000 0.5773503 0.0000000 )
q( 60 ) = ( -0.2500000 -0.5773503 0.0000000 )
q( 61 ) = ( 0.3750000 0.5051815 0.0000000 )
q( 62 ) = ( -0.3750000 -0.5051815 0.0000000 )
q( 63 ) = ( 0.6250000 -0.0721688 0.0000000 )
q( 64 ) = ( -0.6250000 0.0721688 0.0000000 )

Writing epmatq on .epb files


The .epb files have been correctly written


band disentanglement is used: nbndsub = 5

Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file


Reading Hamiltonian, Dynamical matrix and EP vertex in Wann rep from file


Finished reading Wann rep data from file

===================================================================
Memory usage: VmHWM = 152Mb
VmPeak = 521Mb
===================================================================

Using q-mesh file: qpath.txt
-------------------------------------------------------
Primary job terminated normally, but 1 process returned
a non-zero exit code.. Per user-direction, the job has been aborted.
-------------------------------------------------------
--------------------------------------------------------------------------
mpirun detected that one or more processes exited with non-zero status, thus causing
the job to be terminated. The first process to do so was:

Process name: [[37079,1],0]
Exit code: 2
--------------------------------------------------------------------------

Thanks and regards,
Anindya Bose

Re: termination of epw

Posted: Tue Aug 21, 2018 7:06 pm
by roxana
Hi,

The problem appears to be with the q-mesh file: qpath.txt. Please make sure the file is given in the correct format.

Best,
Roxana

Re: termination of epw

Posted: Wed Aug 22, 2018 8:20 am
by anindya@iiita
Dear Dr Roxana Margine,
I have entered the nscf BZ crystal data in filkf='path.txt' file and phonon BZ crystal coordinate data which we obtain during matdyn.x process in the filqf='qpath.dat' file.For my case electron grid is 16x16x1 gives 256 K point crystal and for phonon it is 105 points in q_crystal coordinate.I don't know why the error is coming.Do I need to add anything else here?

Thanks and regards,
Anindya Bose