Mobility calculation
Posted: Mon Aug 13, 2018 6:24 pm
Dear developers,
I tried to repeat the Silicon mobility calculation example.
There are two points I am confused.
1. How can I determine the fine k-path of electronic states (filkf)?
I am confused why the followeing k-path (kpt.txt) used in the mobility calculation example file(epw2.in). Which one is better for mobility calculation, with the parameter of homogeneous fine grid (nkf1) and specific fine k-path(filkf)?
2. When I tested the degaussw and degaussq parameters, I found the computation took a long time. For example, the computation time is 10 hours with 24 processors, when the fine grid are 40*40*40 k-point and 40*40*40 q-point. So if I increase the fine grid size, the computation time will increase to long time(at least several days) to get convergence I guess. Is there any recommendation for degaussw and degaussq parameters testing?
kpt.txt 105 crystal
0.00 0.00 0.00 0.00952380952
0.09 0.00 0.00 0.00952380952
0.00 0.09 0.00 0.00952380952
0.00 0.00 0.09 0.00952380952
0.09 0.09 0.00 0.00952380952
0.09 0.00 0.09 0.00952380952
0.00 0.09 0.09 0.00952380952
0.09 0.09 0.09 0.00952380952
-0.09 0.00 0.00 0.00952380952
0.00 -0.09 0.00 0.00952380952
0.00 0.00 -0.09 0.00952380952
-0.09 -0.09 0.00 0.00952380952
-0.09 0.00 -0.09 0.00952380952
0.00 -0.09 -0.09 0.00952380952
-0.09 -0.09 -0.09 0.00952380952
0.09 -0.09 0.00 0.00952380952
-0.09 0.09 0.00 0.00952380952
-0.09 0.00 0.09 0.00952380952
0.09 0.00 -0.09 0.00952380952
0.00 -0.09 0.09 0.00952380952
0.00 0.09 -0.09 0.00952380952
-0.09 0.09 0.09 0.00952380952
0.09 -0.09 0.09 0.00952380952
0.09 0.09 -0.09 0.00952380952
-0.09 -0.09 0.09 0.00952380952
-0.09 0.09 -0.09 0.00952380952
0.09 -0.09 -0.09 0.00952380952
0.02 0.00 0.00 0.00952380952
0.00 0.02 0.00 0.00952380952
0.00 0.00 0.02 0.00952380952
0.02 0.02 0.00 0.00952380952
0.02 0.00 0.02 0.00952380952
0.00 0.02 0.02 0.00952380952
0.02 0.02 0.02 0.00952380952
-0.02 0.00 0.00 0.00952380952
0.00 -0.02 0.00 0.00952380952
0.00 0.00 -0.02 0.00952380952
-0.02 -0.02 0.00 0.00952380952
-0.02 0.00 -0.02 0.00952380952
0.00 -0.02 -0.02 0.00952380952
-0.02 -0.02 -0.02 0.00952380952
0.02 -0.02 0.00 0.00952380952
-0.02 0.02 0.00 0.00952380952
-0.02 0.00 0.02 0.00952380952
0.02 0.00 -0.02 0.00952380952
0.00 -0.02 0.02 0.00952380952
0.00 0.02 -0.02 0.00952380952
-0.02 0.02 0.02 0.00952380952
0.02 -0.02 0.02 0.00952380952
0.02 0.02 -0.02 0.00952380952
-0.02 -0.02 0.02 0.00952380952
-0.02 0.02 -0.02 0.00952380952
0.02 -0.02 -0.02 0.00952380952
0.03 0.00 0.00 0.00952380952
0.00 0.03 0.00 0.00952380952
0.00 0.00 0.03 0.00952380952
0.03 0.03 0.00 0.00952380952
0.03 0.00 0.03 0.00952380952
0.00 0.03 0.03 0.00952380952
0.03 0.03 0.03 0.00952380952
-0.03 0.00 0.00 0.00952380952
0.00 -0.03 0.00 0.00952380952
0.00 0.00 -0.03 0.00952380952
-0.03 -0.03 0.00 0.00952380952
-0.03 0.00 -0.03 0.00952380952
0.00 -0.03 -0.03 0.00952380952
-0.03 -0.03 -0.03 0.00952380952
0.03 -0.03 0.00 0.00952380952
-0.03 0.03 0.00 0.00952380952
-0.03 0.00 0.03 0.00952380952
0.03 0.00 -0.03 0.00952380952
0.00 -0.03 0.03 0.00952380952
0.00 0.03 -0.03 0.00952380952
-0.03 0.03 0.03 0.00952380952
0.03 -0.03 0.03 0.00952380952
0.03 0.03 -0.03 0.00952380952
-0.03 -0.03 0.03 0.00952380952
-0.03 0.03 -0.03 0.00952380952
0.03 -0.03 -0.03 0.00952380952
0.47 0.00 0.00 0.00952380952
0.00 0.47 0.00 0.00952380952
0.00 0.00 0.47 0.00952380952
0.47 0.47 0.00 0.00952380952
0.47 0.00 0.47 0.00952380952
0.00 0.47 0.47 0.00952380952
0.47 0.47 0.47 0.00952380952
-0.47 0.00 0.00 0.00952380952
0.00 -0.47 0.00 0.00952380952
0.00 0.00 -0.47 0.00952380952
-0.47 -0.47 0.00 0.00952380952
-0.47 0.00 -0.47 0.00952380952
0.00 -0.47 -0.47 0.00952380952
-0.47 -0.47 -0.47 0.00952380952
0.47 -0.47 0.00 0.00952380952
-0.47 0.47 0.00 0.00952380952
-0.47 0.00 0.47 0.00952380952
0.47 0.00 -0.47 0.00952380952
0.00 -0.47 0.47 0.00952380952
0.00 0.47 -0.47 0.00952380952
-0.47 0.47 0.47 0.00952380952
0.47 -0.47 0.47 0.00952380952
0.47 0.47 -0.47 0.00952380952
-0.47 -0.47 0.47 0.00952380952
-0.47 0.47 -0.47 0.00952380952
0.47 -0.47 -0.47 0.00952380952
Best regards,
Hang
I tried to repeat the Silicon mobility calculation example.
There are two points I am confused.
1. How can I determine the fine k-path of electronic states (filkf)?
I am confused why the followeing k-path (kpt.txt) used in the mobility calculation example file(epw2.in). Which one is better for mobility calculation, with the parameter of homogeneous fine grid (nkf1) and specific fine k-path(filkf)?
2. When I tested the degaussw and degaussq parameters, I found the computation took a long time. For example, the computation time is 10 hours with 24 processors, when the fine grid are 40*40*40 k-point and 40*40*40 q-point. So if I increase the fine grid size, the computation time will increase to long time(at least several days) to get convergence I guess. Is there any recommendation for degaussw and degaussq parameters testing?
kpt.txt 105 crystal
0.00 0.00 0.00 0.00952380952
0.09 0.00 0.00 0.00952380952
0.00 0.09 0.00 0.00952380952
0.00 0.00 0.09 0.00952380952
0.09 0.09 0.00 0.00952380952
0.09 0.00 0.09 0.00952380952
0.00 0.09 0.09 0.00952380952
0.09 0.09 0.09 0.00952380952
-0.09 0.00 0.00 0.00952380952
0.00 -0.09 0.00 0.00952380952
0.00 0.00 -0.09 0.00952380952
-0.09 -0.09 0.00 0.00952380952
-0.09 0.00 -0.09 0.00952380952
0.00 -0.09 -0.09 0.00952380952
-0.09 -0.09 -0.09 0.00952380952
0.09 -0.09 0.00 0.00952380952
-0.09 0.09 0.00 0.00952380952
-0.09 0.00 0.09 0.00952380952
0.09 0.00 -0.09 0.00952380952
0.00 -0.09 0.09 0.00952380952
0.00 0.09 -0.09 0.00952380952
-0.09 0.09 0.09 0.00952380952
0.09 -0.09 0.09 0.00952380952
0.09 0.09 -0.09 0.00952380952
-0.09 -0.09 0.09 0.00952380952
-0.09 0.09 -0.09 0.00952380952
0.09 -0.09 -0.09 0.00952380952
0.02 0.00 0.00 0.00952380952
0.00 0.02 0.00 0.00952380952
0.00 0.00 0.02 0.00952380952
0.02 0.02 0.00 0.00952380952
0.02 0.00 0.02 0.00952380952
0.00 0.02 0.02 0.00952380952
0.02 0.02 0.02 0.00952380952
-0.02 0.00 0.00 0.00952380952
0.00 -0.02 0.00 0.00952380952
0.00 0.00 -0.02 0.00952380952
-0.02 -0.02 0.00 0.00952380952
-0.02 0.00 -0.02 0.00952380952
0.00 -0.02 -0.02 0.00952380952
-0.02 -0.02 -0.02 0.00952380952
0.02 -0.02 0.00 0.00952380952
-0.02 0.02 0.00 0.00952380952
-0.02 0.00 0.02 0.00952380952
0.02 0.00 -0.02 0.00952380952
0.00 -0.02 0.02 0.00952380952
0.00 0.02 -0.02 0.00952380952
-0.02 0.02 0.02 0.00952380952
0.02 -0.02 0.02 0.00952380952
0.02 0.02 -0.02 0.00952380952
-0.02 -0.02 0.02 0.00952380952
-0.02 0.02 -0.02 0.00952380952
0.02 -0.02 -0.02 0.00952380952
0.03 0.00 0.00 0.00952380952
0.00 0.03 0.00 0.00952380952
0.00 0.00 0.03 0.00952380952
0.03 0.03 0.00 0.00952380952
0.03 0.00 0.03 0.00952380952
0.00 0.03 0.03 0.00952380952
0.03 0.03 0.03 0.00952380952
-0.03 0.00 0.00 0.00952380952
0.00 -0.03 0.00 0.00952380952
0.00 0.00 -0.03 0.00952380952
-0.03 -0.03 0.00 0.00952380952
-0.03 0.00 -0.03 0.00952380952
0.00 -0.03 -0.03 0.00952380952
-0.03 -0.03 -0.03 0.00952380952
0.03 -0.03 0.00 0.00952380952
-0.03 0.03 0.00 0.00952380952
-0.03 0.00 0.03 0.00952380952
0.03 0.00 -0.03 0.00952380952
0.00 -0.03 0.03 0.00952380952
0.00 0.03 -0.03 0.00952380952
-0.03 0.03 0.03 0.00952380952
0.03 -0.03 0.03 0.00952380952
0.03 0.03 -0.03 0.00952380952
-0.03 -0.03 0.03 0.00952380952
-0.03 0.03 -0.03 0.00952380952
0.03 -0.03 -0.03 0.00952380952
0.47 0.00 0.00 0.00952380952
0.00 0.47 0.00 0.00952380952
0.00 0.00 0.47 0.00952380952
0.47 0.47 0.00 0.00952380952
0.47 0.00 0.47 0.00952380952
0.00 0.47 0.47 0.00952380952
0.47 0.47 0.47 0.00952380952
-0.47 0.00 0.00 0.00952380952
0.00 -0.47 0.00 0.00952380952
0.00 0.00 -0.47 0.00952380952
-0.47 -0.47 0.00 0.00952380952
-0.47 0.00 -0.47 0.00952380952
0.00 -0.47 -0.47 0.00952380952
-0.47 -0.47 -0.47 0.00952380952
0.47 -0.47 0.00 0.00952380952
-0.47 0.47 0.00 0.00952380952
-0.47 0.00 0.47 0.00952380952
0.47 0.00 -0.47 0.00952380952
0.00 -0.47 0.47 0.00952380952
0.00 0.47 -0.47 0.00952380952
-0.47 0.47 0.47 0.00952380952
0.47 -0.47 0.47 0.00952380952
0.47 0.47 -0.47 0.00952380952
-0.47 -0.47 0.47 0.00952380952
-0.47 0.47 -0.47 0.00952380952
0.47 -0.47 -0.47 0.00952380952
Best regards,
Hang