Unit of logarithmic average of phonon frequencies
Posted: Mon Apr 10, 2017 6:03 am
Dear EPW users,
I am interested in electron-phonon interaction in two dimensional materials to understand collective phenomena.
Especially, I want to know the unit of logarithmic average of phonon frequencies in the output of epw, v.4.0.0.
In the output file, logavg = 0.0003401 can be found without unit.
The following are the details of my input and output files.
output is below.
Thank you very much for your time.
Best,
Jun-Ho
I am interested in electron-phonon interaction in two dimensional materials to understand collective phenomena.
Especially, I want to know the unit of logarithmic average of phonon frequencies in the output of epw, v.4.0.0.
In the output file, logavg = 0.0003401 can be found without unit.
The following are the details of my input and output files.
Code: Select all
epw
&inputepw
prefix = 'mote2'
amass(1) = 95.96
amass(2) = 127.6
outdir = './'
time_max = 170000
ep_coupling = .true.
elph = .true.
kmaps = .true.
epbwrite = .false.
epbread = .true.
epwwrite = .true.
epwread = .false.
etf_mem = .true.
a2f =.true.
phonselfen = .true.
wannierize = .true.
num_iter = 800
dis_froz_max= 2.5
dis_froz_min= -6.5
dis_win_max= 4.5
dis_win_min= -6.5
proj(1) = 'Mo:d'
proj(2) = 'Te:p'
wdata(1) = 'bands_plot = .true.'
wdata(2) = 'begin kpoint_path'
wdata(3) = 'G 0.00 0.00 0.00 Y 0.00 0.50 0.00'
wdata(4) = 'Y 0.00 0.50 0.00 M 0.50 0.50 0.00'
wdata(5) = 'M 0.50 0.50 0.00 X 0.50 0.00 0.00'
wdata(6) = 'X 0.50 0.00 0.00 G 0.00 0.00 0.00'
wdata(7) = 'G 0.00 0.00 0.00 M 0.50 0.00 0.00'
wdata(8) = 'end kpoint_path'
wdata(9) = 'bands_plot_format = gnuplot'
wdata(10) = 'guiding_centres = true'
iverbosity = 1
parallel_k = .true.
parallel_q = .false.
eps_acustic = 2.0
ephwrite = .true.
fsthick = 0.4 ! eV
eptemp = 300 ! K
degaussw = 0.10 ! eV
nsmear = 1
delta_smear = 0.04 ! eV
degaussq = 0.5 ! meV
nqstep = 500
eliashberg = .true.
laniso = .true.
limag = .true.
lpade = .true.
conv_thr_iaxis = 1.0d-4
wscut = 1.0 ! eV
nstemp = 3
tempsmin = 2.00
tempsmax = 8.00
nsiter = 500
muc = 0.16
dvscf_dir = '../save'
nk1 = 4
nk2 = 8
nk3 = 1
nq1 = 4
nq2 = 8
nq3 = 1
nkf1 = 20
nkf2 = 40
nkf3 = 1
nqf1 = 20
nqf2 = 40
nqf3 = 1
/
15 cartesian
0.000000000 0.000000000 0.000000000 0.01
0.000000000 0.227099715 0.000000000 0.02
0.000000000 0.454199430 0.000000000 0.01
0.000000000 0.681299145 0.000000000 0.02
0.000000000 -0.908398861 0.000000000 0.04
0.250000000 0.000000000 0.000000000 0.02
0.250000000 0.227099715 0.000000000 0.02
0.250000000 0.454199430 0.000000000 0.04
0.250000000 0.681299145 0.000000000 0.02
0.250000000 -0.908398861 0.000000000 0.02
-0.500000000 0.000000000 0.000000000 0.04
-0.500000000 0.227099715 0.000000000 0.02
-0.500000000 0.454199430 0.000000000 0.01
-0.500000000 0.681299145 0.000000000 0.02
-0.500000000 -0.908398861 0.000000000 0.01
output is below.
Code: Select all
.
.
===================================================================
Eliashberg Spectral Function in the Migdal Approximation
===================================================================
lambda : 2.9539627
lambda_tr : 2.5730481
Estimated Allen-Dynes Tc
logavg = 0.0003401 l_a2F = 2.9830315
mu = 0.10 Tc = 9.639527937051 K
mu = 0.12 Tc = 9.325415447053 K
mu = 0.14 Tc = 9.008365664317 K
mu = 0.16 Tc = 8.688529631271 K
mu = 0.18 Tc = 8.366082310892 K
mu = 0.20 Tc = 8.041225121179 K
a2F : 3.52s CPU 3.53s WALL ( 1 calls)
===================================================================
Solve anisotropic Eliashberg equations
===================================================================
Finish reading .freq file
Fermi level (eV) = 1.3528688042E+00
DOS(states/spin/eV/Unit Cell) = 1.0916033215E+00
Electron smearing (eV) = 1.0000000000E-01
Fermi window (eV) = 4.0000000000E-01
Nr k-points within the Fermi shell = 518 out of 800
2 bands within the Fermi window
.
.
.
Thank you very much for your time.
Best,
Jun-Ho