Running EPW for 2D semiconductors
Posted: Sat Nov 19, 2016 8:42 am
Dear all,
I want to calculate electron self-energy for scattering rates by electron-phonon interactions for 2D semiconductors having finite gap.
In the paper (S. Ponc et al. / Computer Physics Communications 209 (2016) 116133), since electron scattering rates for undoped silicon were shown, I believe that EPW can calculate electron self-energies for not only metals but semiconductors.
However, when I tried to run EPW v4.1 as implemented in qe 6.0 for 2D semiconductors (I used tag system_2d = .true.), I faced problems that self energies become unrealistic huge values and values in decay.epmat_wanep are strange while values in decay.epwan doesn't have any problem.
The final outputs for electron self-energy, decay.epmat_wanep, and decay.epwan are described as below.
As I checked wannierization and phonon dispersion curve, I cannot found any problems for the wannier and phonon.
When I saw output file carefully, there was warning message for difference between Fermi energies from coarse grid and fine k-mesh.
Does it give serious problems?
Is there anyone who encounters the same problem or knows how to solve this problem?
Thank you.
Best regards,
I want to calculate electron self-energy for scattering rates by electron-phonon interactions for 2D semiconductors having finite gap.
In the paper (S. Ponc et al. / Computer Physics Communications 209 (2016) 116133), since electron scattering rates for undoped silicon were shown, I believe that EPW can calculate electron self-energies for not only metals but semiconductors.
However, when I tried to run EPW v4.1 as implemented in qe 6.0 for 2D semiconductors (I used tag system_2d = .true.), I faced problems that self energies become unrealistic huge values and values in decay.epmat_wanep are strange while values in decay.epwan doesn't have any problem.
The final outputs for electron self-energy, decay.epmat_wanep, and decay.epwan are described as below.
Code: Select all
# Electron lifetime (meV)
# ik ibnd E(ibnd) Im(Sgima)(meV)
1 1 -0.15999555711729E+02 0.21825383185903E+70
1 2 -0.14280977405867E+02 0.23882330257160E+70
1 3 -0.14110604428389E+02 0.77447215906861E+68
1 4 -0.99986280252164E+01 0.49041383819028E+70
1 5 -0.93109835174232E+01 0.64127010367182E+70
1 6 -0.72418709172874E+01 0.23224606667463E+70
1 7 -0.55275232062358E+01 0.40327282641546E+70
1 8 -0.44959862051001E+01 0.13195538727356E+70
1 9 -0.38607786125222E+01 0.97470765626990E+68
1 10 -0.37960743306642E+01 0.97775694174974E+68
1 11 -0.34783674871345E+01 0.49426565858991E+69
1 12 -0.31457145941218E+01 0.18289964703863E+68
1 13 -0.23037737592355E+01 0.12878046165150E+70
1 14 -0.21821556104848E+01 0.27546726435307E+70
1 15 -0.91689570772186E+00 0.49849784396679E+69
1 16 0.35050596335270E+00 0.48505673827446E+69
1 17 0.15277075491323E+01 0.13310271379821E+70
1 18 0.18053124124261E+01 0.10333756926782E+70
1 19 0.22840073069910E+01 0.14850500519154E+70
1 20 0.23898102667957E+01 0.12670152113566E+70
1 21 0.29403289568160E+01 0.10128077867223E+70
1 22 0.33422893155053E+01 0.10512779864113E+70
1 23 0.40901137616935E+01 0.12343982954155E+70
1 24 0.50314389154001E+01 0.30163515826647E+70
2 1 -0.15996087175471E+02 0.32446348472872E+70
2 2 -0.14280964316454E+02 0.24829855054775E+70
2 3 -0.14103899569592E+02 0.12092444712278E+70
2 4 -0.99978475174984E+01 0.51406473617840E+70
2 5 -0.93098952452556E+01 0.72611846157543E+70
2 6 -0.72397288644130E+01 0.35127960659679E+70
2 7 -0.55287121885116E+01 0.40467005042930E+70
2 8 -0.44973963324532E+01 0.17414760265497E+70
2 9 -0.38953474499550E+01 0.79431605711224E+69
2 10 -0.38458557052216E+01 0.60084841736295E+69
2 11 -0.34480450435216E+01 0.85410126148159E+69
2 12 -0.31289694291679E+01 0.11496459370621E+70
2 13 -0.23334809942658E+01 0.22787190371606E+70
2 14 -0.21805755550129E+01 0.39106222318838E+70
2 15 -0.92128532448568E+00 0.13882298290173E+70
Code: Select all
# R_e, R_p, max_{m,n,nu} |g(m,n,nu;R_e,R_p)|
0.0000000000 0.0000000000***************
3.2802192104 0.0000000000***************
3.2802192104 0.0000000000***************
6.5604384209 0.0000000000***************
6.5604384209 0.0000000000***************
7.2373226221 0.0000000000***************
7.2373226221 0.0000000000***************
7.2373226221 0.0000000000***************
7.2373226221 0.0000000000***************
8.5964245401 0.0000000000***************
8.5964245401 0.0000000000***************
8.5964245401 0.0000000000***************
8.5964245401 0.0000000000***************
9.8406576313 0.0000000000***************
9.8406576313 0.0000000000***************
10.8137813529 0.0000000000***************
10.8137813529 0.0000000000***************
10.8137813529 0.0000000000***************
10.8137813529 0.0000000000***************
14.0980678421 0.0000000000***************
14.0980678421 0.0000000000***************
14.4746452443 0.0000000000***************
14.4746452443 0.0000000000***************
14.4746452443 0.0000000000***************
14.4746452443 0.0000000000***************
15.5497546332 0.0000000000***************
15.5497546332 0.0000000000***************
15.5497546332 0.0000000000***************
15.5497546332 0.0000000000***************
Code: Select all
# Spatial decay of e-p matrix elements in Wannier basis
0.000000000000000E+000 0.291346855638052
3.28021921044301 6.490853709214308E-003
3.28021921044301 6.490853710880915E-003
6.56043842088602 1.837076326283176E-003
6.56043842088602 1.837076327293353E-003
7.23732262214935 3.833923468712698E-002
7.23732262214935 3.830008207020476E-002
7.23732262214935 3.830008207136522E-002
7.23732262214935 3.833923468621558E-002
8.59642454013257 4.716060827665735E-003
8.59642454013257 4.703116401033521E-003
8.59642454013257 4.703116400848962E-003
8.59642454013257 4.716060827658721E-003
14.0980678420747 1.782159442384595E-003
14.0980678420747 1.782159442624803E-003
14.4746452442987 4.537116385138993E-003
14.4746452442987 4.540590812053117E-003
14.4746452442987 4.540590810329914E-003
14.4746452442987 4.537116384385748E-003
9.84065763132902 6.625166564662149E-004
9.84065763132902 6.625166555358239E-004
10.8137813529048 9.164143016137713E-004
10.8137813529048 9.132745853651637E-004
10.8137813529048 9.132745851209546E-004
10.8137813529048 9.164143019652921E-004
13.1208768417720 5.103308308118051E-004
13.1208768417720 5.103308291178507E-004
13.4720783682321 4.257495095769741E-004
13.4720783682321 4.307649960071313E-004
13.4720783682321 4.307649949236289E-004
13.4720783682321 4.257495090145206E-004
15.5497546332403 6.730503551253587E-004
15.5497546332403 6.730474091634435E-004
15.5497546332403 6.730474091521625E-004
15.5497546332403 6.730503551355285E-004
16.3577382332724 2.642142181761415E-004
16.3577382332724 2.636055808538121E-004
16.3577382332724 2.636055818951108E-004
16.3577382332724 2.642142181628109E-004
As I checked wannierization and phonon dispersion curve, I cannot found any problems for the wannier and phonon.
When I saw output file carefully, there was warning message for difference between Fermi energies from coarse grid and fine k-mesh.
Does it give serious problems?
Is there anyone who encounters the same problem or knows how to solve this problem?
Thank you.
Best regards,