problems calculating the superconducting MoB2 gap and Tc using The Eliashberg formalism
Posted: Tue Jun 29, 2021 1:05 pm
Dear EPW community,
On the basis of the MGB2 case provided by EPW, I calculated MOB2 with the same space group, but the following error occurred
Bloch2wanp: 22 / 22
Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file
===================================================================
Memory usage: VmHWM = 172Mb
VmPeak = 506Mb
===================================================================
Using uniform q-mesh: 20 20 20
Size of q point mesh for interpolation: 8000
Using uniform MP k-mesh: 20 20 20
Size of k point mesh for interpolation: 968
Max number of k points per pool: 70
Fermi energy coarse grid = 19.151446 eV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Error in routine efermig (1):
internal error, cannot bracket Ef
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
stopping ...
fermi energy calculated by EPW is 19.151446, is larger than the result calculated by pw.x. this is scf.out
[rencong@mu01 epw]$ grep 'Fermi energy' scf.out
the Fermi energy is 19.1246 ev
epw.in show that:
--
&inputepw
prefix = 'MoB2',
amass(1) = 95.94,
amass(2) = 10.811
outdir = './'
ep_coupling = .true.
elph = .true.
kmaps = .false.
epbwrite = .true.
epbread = .false.
epwwrite = .true.
epwread = .false.
etf_mem = 1
nbndsub = 5,
wannierize = .true.
num_iter = 500
dis_froz_max= 8.4
proj(1) = 'B:pz'
proj(2) = 'f=0.5,1.0,0.5:s'
proj(3) = 'f=0.0,0.5,0.5:s'
proj(4) = 'f=0.5,0.5,0.5:s'
iverbosity = 2
eps_acustic = 2.0 ! Lowest boundary for the phonon frequency
ephwrite = .true. ! Writes .ephmat files used when Eliasberg = .true.
fsthick = 0.4 ! eV
degaussw = 0.10 ! eV
nsmear = 1
delta_smear = 0.04 ! eV
degaussq = 0.5 ! meV
nqstep = 500
eliashberg = .true.
laniso = .true.
limag = .true.
lpade = .true.
conv_thr_iaxis = 1.0d-4
wscut = 1.0 ! eV Upper limit over frequency integration/summation in the Elisashberg eq
nstemp = 1 ! Nr. of temps
temps = 1 ! K provide list of temperetures OR (nstemp and temps = tempsmin tempsmax for even space mode)
nsiter = 500
muc = 0.16
dvscf_dir = '../phonon/save'
nk1 = 6
nk2 = 6
nk3 = 6
nq1 = 6
nq2 = 6
nq3 = 6
mp_mesh_k = .true.
nkf1 = 20
nkf2 = 20
nkf3 = 20
nqf1 = 20
nqf2 = 20
nqf3 = 20
/
scf.in show that
&control
calculation='scf',
prefix='MoB2',
pseudo_dir = '../',
outdir='./',
tprnfor = .true.,
tstress = .true.,
etot_conv_thr = 1.0d-5
forc_conv_thr = 1.0d-4
/
&system
ibrav = 0,
nat= 3,
ntyp = 2,
ecutwfc = 40
smearing = 'mp'
occupations = 'smearing'
degauss = 0.02
/
&electrons
diagonalization = 'david'
mixing_mode = 'plain'
mixing_beta = 0.7
conv_thr = 1.0d-9
/
ATOMIC_SPECIES
B 10.811 B.UPF
Mo 95.94 Mo.UPF
CELL_PARAMETERS (angstrom)
3.0304924100 0.0000000000 0.0000000000
-1.5152462050 2.6244834130 0.0000000000
0.0000000000 0.0000000000 3.3493210000
ATOMIC_POSITIONS (crystal)
Mo 0.0000000000 0.0000000000 0.0000000000
B 0.6666666700 0.3333333300 0.5000000000
B 0.3333333300 0.6666666700 0.5000000000
K_POINTS AUTOMATIC
12 12 12 0 0 0
On the basis of the MGB2 case provided by EPW, I calculated MOB2 with the same space group, but the following error occurred
Bloch2wanp: 22 / 22
Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file
===================================================================
Memory usage: VmHWM = 172Mb
VmPeak = 506Mb
===================================================================
Using uniform q-mesh: 20 20 20
Size of q point mesh for interpolation: 8000
Using uniform MP k-mesh: 20 20 20
Size of k point mesh for interpolation: 968
Max number of k points per pool: 70
Fermi energy coarse grid = 19.151446 eV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Error in routine efermig (1):
internal error, cannot bracket Ef
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
stopping ...
fermi energy calculated by EPW is 19.151446, is larger than the result calculated by pw.x. this is scf.out
[rencong@mu01 epw]$ grep 'Fermi energy' scf.out
the Fermi energy is 19.1246 ev
epw.in show that:
--
&inputepw
prefix = 'MoB2',
amass(1) = 95.94,
amass(2) = 10.811
outdir = './'
ep_coupling = .true.
elph = .true.
kmaps = .false.
epbwrite = .true.
epbread = .false.
epwwrite = .true.
epwread = .false.
etf_mem = 1
nbndsub = 5,
wannierize = .true.
num_iter = 500
dis_froz_max= 8.4
proj(1) = 'B:pz'
proj(2) = 'f=0.5,1.0,0.5:s'
proj(3) = 'f=0.0,0.5,0.5:s'
proj(4) = 'f=0.5,0.5,0.5:s'
iverbosity = 2
eps_acustic = 2.0 ! Lowest boundary for the phonon frequency
ephwrite = .true. ! Writes .ephmat files used when Eliasberg = .true.
fsthick = 0.4 ! eV
degaussw = 0.10 ! eV
nsmear = 1
delta_smear = 0.04 ! eV
degaussq = 0.5 ! meV
nqstep = 500
eliashberg = .true.
laniso = .true.
limag = .true.
lpade = .true.
conv_thr_iaxis = 1.0d-4
wscut = 1.0 ! eV Upper limit over frequency integration/summation in the Elisashberg eq
nstemp = 1 ! Nr. of temps
temps = 1 ! K provide list of temperetures OR (nstemp and temps = tempsmin tempsmax for even space mode)
nsiter = 500
muc = 0.16
dvscf_dir = '../phonon/save'
nk1 = 6
nk2 = 6
nk3 = 6
nq1 = 6
nq2 = 6
nq3 = 6
mp_mesh_k = .true.
nkf1 = 20
nkf2 = 20
nkf3 = 20
nqf1 = 20
nqf2 = 20
nqf3 = 20
/
scf.in show that
&control
calculation='scf',
prefix='MoB2',
pseudo_dir = '../',
outdir='./',
tprnfor = .true.,
tstress = .true.,
etot_conv_thr = 1.0d-5
forc_conv_thr = 1.0d-4
/
&system
ibrav = 0,
nat= 3,
ntyp = 2,
ecutwfc = 40
smearing = 'mp'
occupations = 'smearing'
degauss = 0.02
/
&electrons
diagonalization = 'david'
mixing_mode = 'plain'
mixing_beta = 0.7
conv_thr = 1.0d-9
/
ATOMIC_SPECIES
B 10.811 B.UPF
Mo 95.94 Mo.UPF
CELL_PARAMETERS (angstrom)
3.0304924100 0.0000000000 0.0000000000
-1.5152462050 2.6244834130 0.0000000000
0.0000000000 0.0000000000 3.3493210000
ATOMIC_POSITIONS (crystal)
Mo 0.0000000000 0.0000000000 0.0000000000
B 0.6666666700 0.3333333300 0.5000000000
B 0.3333333300 0.6666666700 0.5000000000
K_POINTS AUTOMATIC
12 12 12 0 0 0