Wrong eigenvector of dynmat after interpolation
Posted: Mon Sep 26, 2016 1:55 pm
Dear all,
I am checking the accuracy of eigenvector of dynmat in EPW before and after Wannier interpolation.
The system for testing is graphene, and I printed out the eigenvector and eigenvalue of the dynmat for Gamma point. I see that the eigenvectors is very different just because of small numbers in dynmat before and after interpolation. The eigenvector before interpolation is printed out as in cz1. The eigenvector after interpolation is printed out in dynwan2bloch.f90.
Since the eigenvectors are used to interpolate the el-ph couplings, I think this is an important problem I meet.
The data is as follows:
Since the unit only has two C atoms, before interpolation, it is :
Dynmat at gamma point (The imaginary part is absolute zero and has been ommited)
0.98892E-04 0.00000E+00 0.00000E+00 -0.98892E-04 0.00000E+00 0.00000E+00
0.00000E+00 0.98892E-04 0.00000E+00 0.00000E+00 -0.98892E-04 0.00000E+00
0.00000E+00 0.00000E+00 0.31650E-04 0.00000E+00 0.00000E+00 -0.31650E-04
-0.98892E-04 0.00000E+00 0.00000E+00 0.98892E-04 0.00000E+00 0.00000E+00
0.00000E+00 -0.98892E-04 0.00000E+00 0.00000E+00 0.98892E-04 0.00000E+00
0.00000E+00 0.00000E+00 -0.31650E-04 0.00000E+00 0.00000E+00 0.31650E-04
Eigenvector: (Each line is an eigenvector)
0.00000E+00 -0.70711E+00 0.00000E+00 0.00000E+00 0.00000E+00 -0.70711E+00
-0.70711E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.70711E+00 0.00000E+00
0.00000E+00 0.00000E+00 -0.70711E+00 -0.70711E+00 0.00000E+00 0.00000E+00
0.00000E+00 -0.70711E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.70711E+00
-0.70711E+00 0.00000E+00 0.00000E+00 0.00000E+00 -0.70711E+00 0.00000E+00
0.00000E+00 0.00000E+00 -0.70711E+00 0.70711E+00 0.00000E+00 0.00000E+00
Eigenvalue:
0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000
873.085987314969 1543.29835579232 1543.29835579232
after interplation:
dynmat at gamma point: (small values appeared)
0.98892E-04 -0.85372E-20 0.00000E+00 -0.98892E-04 0.41852E-11 0.00000E+00
-0.49168E-20 0.98892E-04 0.00000E+00 0.41852E-11 -0.98892E-04 0.00000E+00
0.00000E+00 0.00000E+00 0.31650E-04 0.00000E+00 0.00000E+00 -0.31650E-04
-0.98892E-04 0.41852E-11 0.00000E+00 0.98892E-04 -0.90009E-20 0.00000E+00
0.41852E-11 -0.98892E-04 0.00000E+00 -0.82165E-20 0.98892E-04 0.00000E+00
0.00000E+00 0.00000E+00 -0.31650E-04 0.00000E+00 0.00000E+00 0.31650E-04
eigenvector:
0.48406E-10 0.61237E+00 0.35355E+00 -0.61136E-23 -0.35355E+00 0.61237E+00
-0.21401E-09 -0.35355E+00 0.61237E+00 -0.11132E-15 -0.61237E+00 -0.35355E+00
0.70711E+00 -0.14893E-09 0.16113E-09 -0.70711E+00 0.51836E-16 0.29928E-16
0.48406E-10 0.61237E+00 0.35355E+00 -0.38960E-23 0.35355E+00 -0.61237E+00
-0.21401E-09 -0.35355E+00 0.61237E+00 -0.40066E-16 0.61237E+00 0.35355E+00
0.70711E+00 -0.14893E-09 0.16113E-09 0.70711E+00 -0.98753E-17 -0.57015E-17
eigenvalue:
0.264266350710401 0.513382850992079 0.616404685465330
873.085938477670 1543.29828823297 1543.29832594207
The eigenvalues are same, dynmat is different in small numbers, but the eigenvectors are very different. When I change the small numbers to absolute zero, the eigenvectors become the same before and after interpolation.
I appreciate any comments. Thank you!
Best regards,
I am checking the accuracy of eigenvector of dynmat in EPW before and after Wannier interpolation.
The system for testing is graphene, and I printed out the eigenvector and eigenvalue of the dynmat for Gamma point. I see that the eigenvectors is very different just because of small numbers in dynmat before and after interpolation. The eigenvector before interpolation is printed out as in cz1. The eigenvector after interpolation is printed out in dynwan2bloch.f90.
Since the eigenvectors are used to interpolate the el-ph couplings, I think this is an important problem I meet.
The data is as follows:
Since the unit only has two C atoms, before interpolation, it is :
Dynmat at gamma point (The imaginary part is absolute zero and has been ommited)
0.98892E-04 0.00000E+00 0.00000E+00 -0.98892E-04 0.00000E+00 0.00000E+00
0.00000E+00 0.98892E-04 0.00000E+00 0.00000E+00 -0.98892E-04 0.00000E+00
0.00000E+00 0.00000E+00 0.31650E-04 0.00000E+00 0.00000E+00 -0.31650E-04
-0.98892E-04 0.00000E+00 0.00000E+00 0.98892E-04 0.00000E+00 0.00000E+00
0.00000E+00 -0.98892E-04 0.00000E+00 0.00000E+00 0.98892E-04 0.00000E+00
0.00000E+00 0.00000E+00 -0.31650E-04 0.00000E+00 0.00000E+00 0.31650E-04
Eigenvector: (Each line is an eigenvector)
0.00000E+00 -0.70711E+00 0.00000E+00 0.00000E+00 0.00000E+00 -0.70711E+00
-0.70711E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.70711E+00 0.00000E+00
0.00000E+00 0.00000E+00 -0.70711E+00 -0.70711E+00 0.00000E+00 0.00000E+00
0.00000E+00 -0.70711E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.70711E+00
-0.70711E+00 0.00000E+00 0.00000E+00 0.00000E+00 -0.70711E+00 0.00000E+00
0.00000E+00 0.00000E+00 -0.70711E+00 0.70711E+00 0.00000E+00 0.00000E+00
Eigenvalue:
0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000
873.085987314969 1543.29835579232 1543.29835579232
after interplation:
dynmat at gamma point: (small values appeared)
0.98892E-04 -0.85372E-20 0.00000E+00 -0.98892E-04 0.41852E-11 0.00000E+00
-0.49168E-20 0.98892E-04 0.00000E+00 0.41852E-11 -0.98892E-04 0.00000E+00
0.00000E+00 0.00000E+00 0.31650E-04 0.00000E+00 0.00000E+00 -0.31650E-04
-0.98892E-04 0.41852E-11 0.00000E+00 0.98892E-04 -0.90009E-20 0.00000E+00
0.41852E-11 -0.98892E-04 0.00000E+00 -0.82165E-20 0.98892E-04 0.00000E+00
0.00000E+00 0.00000E+00 -0.31650E-04 0.00000E+00 0.00000E+00 0.31650E-04
eigenvector:
0.48406E-10 0.61237E+00 0.35355E+00 -0.61136E-23 -0.35355E+00 0.61237E+00
-0.21401E-09 -0.35355E+00 0.61237E+00 -0.11132E-15 -0.61237E+00 -0.35355E+00
0.70711E+00 -0.14893E-09 0.16113E-09 -0.70711E+00 0.51836E-16 0.29928E-16
0.48406E-10 0.61237E+00 0.35355E+00 -0.38960E-23 0.35355E+00 -0.61237E+00
-0.21401E-09 -0.35355E+00 0.61237E+00 -0.40066E-16 0.61237E+00 0.35355E+00
0.70711E+00 -0.14893E-09 0.16113E-09 0.70711E+00 -0.98753E-17 -0.57015E-17
eigenvalue:
0.264266350710401 0.513382850992079 0.616404685465330
873.085938477670 1543.29828823297 1543.29832594207
The eigenvalues are same, dynmat is different in small numbers, but the eigenvectors are very different. When I change the small numbers to absolute zero, the eigenvectors become the same before and after interpolation.
I appreciate any comments. Thank you!
Best regards,